Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A role for the Adenomatous Polyposis Coli protein in chromosome segregation

Abstract

Mutations in the Adenomatous Polyposis Coli (APC) gene are responsible for familial colon cancer and also occur in the early stages of sporadic colon cancer1. APC functions in the Wnt signalling pathway to regulate the degradation of β-catenin (reviewed in refs 13). APC also binds to and stabilizes microtubules in vivo and in vitro4, localizes to clusters at the ends of microtubules near the plasma membrane of interphase cells5,6, and is an important regulator of cytoskeletal function7,8. Here we show that cells carrying a truncated APC gene (Min)9 are defective in chromosome segregation. Moreover, during mitosis, APC localizes to the ends of microtubules embedded in kinetochores and forms a complex with the checkpoint proteins Bub1 and Bub3. In vitro, APC is a high-affinity substrate for Bub kinases. Our data are consistent with a role for APC in kinetochore–microtubule attachment and suggest that truncations in APC that eliminate microtubule binding may contribute to chromosomal instability in cancer cells10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cells lacking functional APC protein undergo aberrant mitosis.
Figure 2: APC is localized to kinetochores in mitotic cells.
Figure 3: Bub kinases specifically phosphorylate and bind to APC.
Figure 4: Analysing the role of APC in the mitotic checkpoint.

Similar content being viewed by others

References

  1. Kinzler, W. K. & Vogelstein, B. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  2. McCartney, B. M. & Peifer, M. Nature Cell Biol. 2, E58–E60 (2000).

    Article  CAS  Google Scholar 

  3. Peifer, M. & Polakis, P. Science 287, 1606–1609 (2000).

    Article  CAS  Google Scholar 

  4. Zumbrunn, J., Inoshita, K., Hyman, A. A. & Näthke, I. S. Curr. Biol. 11, 44–49 (2000).

    Article  Google Scholar 

  5. Näthke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. J. Cell Biol. 134, 165–179 (1996).

    Article  Google Scholar 

  6. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. J. Cell Biol. 148, 505–517 (2000).

    Article  CAS  Google Scholar 

  7. McCartney, B. M. et al. J. Cell Biol. 146, 1303–1318 (1999).

    Article  CAS  Google Scholar 

  8. Yu, X., Waltzer, L. & Bienz, M. Nature Cell Biol. 1, 144–151 (1999).

    Article  CAS  Google Scholar 

  9. Su, L. K. et al. Science 256, 668–670 (1992).

    Article  CAS  Google Scholar 

  10. Lengauer, C., Kinzler, K. & Vogelstein, B. Nature 396, 643–649 (1998).

    Article  CAS  Google Scholar 

  11. Earnshaw, W. C. & Rothfield, N. Chromosoma 91, 313–321 (1985).

    Article  CAS  Google Scholar 

  12. Martinez Exposito, M., Kaplan, K., Copeland, J. & Sorger, P. Proc. Natl Acad. Sci. USA 96, 8493–8498 (1999).

    Article  CAS  Google Scholar 

  13. Dobles, M., Libertal, V., Scott, M. L., Benezra, R. & Sorger, P. K. Cell 101, 635–645 (2000).

    Article  CAS  Google Scholar 

  14. Kalitsis, P., Earle, E., Fowler, K. J. & Choo, K. H. Genes Dev. 14, 2277–2282 (2000).

    Article  CAS  Google Scholar 

  15. Cahill, D. P. et al. Nature 392, 300–303 (1998).

    Article  CAS  Google Scholar 

  16. Morgenstern, J. P. & Land, H. Nucleic Acid Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  17. Rubinfeld, B. et al. Science 272, 1023–1026 (1996).

    Article  CAS  Google Scholar 

  18. Hanks, S. K. & Junter, T. FASEB J. 9, 576–596 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Marine Biological Laboratory, R. Weinberg, J. Copeland, the T. J. Mitchison laboratory and the Human Cytogenetics Group at Ninewells Hospital for help, and members of the I.S.N. laboratory and K. Storey for critical reading of the manuscript. A substantial portion of this work was carried out at UC Davis with the support of the American Cancer Society. This work was also supported by grants from the NIH and Merck (to P.K.S.) and from the Wellcome Trust and the Cancer Research Campaign (to J.R.S.), and by a Cancer Research Campaign Senior Fellowship and a Burroughs Wellcome Career Development Award to I.S.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inke S. Näthke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, K., Burds, A., Swedlow, J. et al. A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat Cell Biol 3, 429–432 (2001). https://doi.org/10.1038/35070123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing