Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex

Abstract

cAMP-dependent protein kinase A (PKA) can modulate synaptic transmission by acting directly on unknown targets in the neurotransmitter secretory machinery. Here we identify Snapin, a protein of relative molecular mass 15,000 that is implicated in neurotransmission by binding to SNAP-25, as a possible target. Deletion mutation and site-directed mutagenetic experiments pinpoint the phosphorylation site to serine 50. PKA-phosphorylation of Snapin significantly increases its binding to synaptosomal-associated protein-25 (SNAP-25). Mutation of Snapin serine 50 to aspartic acid (S50D) mimics this effect of PKA phosphorylation and enhances the association of synaptotagmin with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Furthermore, treatment of rat hippocampal slices with nonhydrolysable cAMP analogue induces in vivo phosphorylation of Snapin and enhances the interaction of both Snapin and synaptotagmin with the SNARE complex. In adrenal chromaffin cells, overexpression of the Snapin S50D mutant leads to an increase in the number of release-competent vesicles. Our results indicate that Snapin may be a PKA target for modulating transmitter release through the cAMP-dependent signal-transduction pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKA-dependent phosphorylation of Snapin in vitro.
Figure 2: Serine 50 is the site of PKA phosphorylation in Snapin.
Figure 3: Stoichiometry of PKA phosphorylation of Snapin.
Figure 4: Functional consequences of phosphorylation of Snapin by PKA.
Figure 5: Effect of the S50D mutant on the association of synaptotagmin with the SNARE complex.
Figure 6: cAMP-dependent phosphorylation of Snapin potentiates interactions of Snapin and synaptotagmin with the SNARE complex.
Figure 7: Physiological effects of overexpression of S50D and S50A Snapin on large dense-core vesicle (LDCV) exocytosis.

Similar content being viewed by others

References

  1. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  2. Bajjalieh, S. M. & Scheller, R. H. The biochemistry of neurotransmitter secretion. J. Biol. Chem. 270, 1971–1974 (1995).

    Article  CAS  Google Scholar 

  3. Südhof, T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 (1995).

    Article  Google Scholar 

  4. Hilfiker, S., Greengard, P. & Augustine, G. J. Coupling calcium to SNARE-mediated synaptic vesicle fusion. Nature Neuroscience 2, 104–106 (1999).

    Article  CAS  Google Scholar 

  5. Trimble, W. S., Cowan, D. M. & Scheller, R. H. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Natl Acad. Sci. USA 85, 4538–4542 (1988).

    Article  CAS  Google Scholar 

  6. Bennett, M. K., Calakos, N. & Scheller, R. H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  Google Scholar 

  7. Oyler, G. A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell. Biol. 109, 3039–3052 (1989).

    Article  CAS  Google Scholar 

  8. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  Google Scholar 

  9. Calakos, N., Bennett, M. K., Peterson, K. & Scheller, R. H. Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146–1149 (1994).

    Article  CAS  Google Scholar 

  10. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  11. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  12. Chen, Y. A., Scales, A. J., Patel, S. M., Doung, Y.-C. & Scheller, R. H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  Google Scholar 

  13. Bommert, K. et al. Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 363, 163–165 (1993).

    Article  CAS  Google Scholar 

  14. Broadie, K., Bellen, H. J., DiAntonio, A., Littleton, J. T. & Schwarz, T. L. Absence of synaptotagmin disrupts excitation–secretion coupling during synaptic transmission. Proc. Natl Acad. Sci. USA 91, 10727–10731 (1994).

    Article  CAS  Google Scholar 

  15. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  16. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  17. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    Article  CAS  Google Scholar 

  18. Martinez, J. L. Jr, & Derrick, B. E. Long-term potentiation and learning. Annu. Rev. Psychol. 47, 173–203 (1996).

    Article  Google Scholar 

  19. Bouron, A. & Reuter, H. Muscarinic stimulation of synaptic activity by protein kinase C is inhibited by adenosine in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 94, 12224–12229 (1997).

    Article  CAS  Google Scholar 

  20. Dixon, D. & Atwood, H. L. Adenylated cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction. J. Neurosci. 9, 4245–4252 (1989).

    Article  Google Scholar 

  21. Chavez-Noriega, L. E. & Stevens, C. F. Increased transmitter release at excitatory synapses produced by direct activation of adenylated cyclase in rat hippocampal slices. J. Neurosci. 14, 310–317 (1994).

    Article  CAS  Google Scholar 

  22. Klein, M. Synaptic augmentation by 5-HT at rested Aplysia sensorimoter synapses: independence of action potential prolongation. Neuron 13, 159–166 (1994).

    Article  CAS  Google Scholar 

  23. Capogna, M., Gähwiler, B. H. & Thompson, S. M. Presynaptic enhancement of inhibitory synaptic transmission by protein kinases A and C in the rat hippocampus in vitro. J. Neurosci. 15, 1249–1260 (1995).

    Article  CAS  Google Scholar 

  24. Chavis, P., Mollard, P., Bockaert, J. & Manzoni, O. Visualization of cyclic AMP-regulated presynaptic activity at cerebellar granule cells. Neuron 20, 773–781 (1998).

    Article  CAS  Google Scholar 

  25. Huang, Y. Y., Li, X. C. & Kandel, E. R. cAMP contributes to mossy fiber LTP by inititating both a covalently mediated early phase and a macromolecular synthesis-dependent late phase. Cell 79, 69–79 (1994).

    Article  CAS  Google Scholar 

  26. Weisskopf, M. G., Castillo, P. E., Zalutsky, R. A. & Nicoll, R. A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic-AMP. Science 265, 1876–1882 (1994).

    Article  Google Scholar 

  27. Trudeau, L. E., Emery, D. G. & Haydon, P. G. Direct modulation of the secretory machinery underlies PKA-dependent synaptic facilitation in hippocampal neurons. Neuron 17, 789–797 (1996).

    Article  CAS  Google Scholar 

  28. Trudeau, L. E., Fang, Y., & Haydon, P. G. Modulation of an early step in the secretory machinery in hippocampal nerve terminals. Proc. Natl Acad. Sci. USA 95, 7163–7168 (1998).

    Article  CAS  Google Scholar 

  29. Ilardi, J. M., Mochida, S., & Sheng, Z.-H. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nature Neurosci. 2, 119–124 (1999).

    Article  CAS  Google Scholar 

  30. Kennelly, P. J. & Krebs, E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266, 15555–15558 (1991).

    CAS  Google Scholar 

  31. Risinger, C. & Bennett, M. K. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. J. Neurochem. 72, 614–624 (1999).

    Article  CAS  Google Scholar 

  32. Hirling, H. & Scheller, R. H. Phosphorylation of synaptic vesicle proteins: modulation of the αSNAP interaction with the core complex. Proc. Natl Acad. Sci. USA 93, 11945–11949 (1996).

    Article  CAS  Google Scholar 

  33. Foster, L. J. et al. Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochem. 37, 11089–11096 (1998).

    Article  CAS  Google Scholar 

  34. Sandberg, M. et al. Characterization of Sp-5,6-dichloro-1-β-D ribofuranosylbenzimidazole-3′,5′-monophosphorothioate (Sp-5,6-DCl-cBIMPS) as a potent and specific activator of cyclic AMP-dependent protein kinase in cell extracts and intact cells. Biochem. J. 279, 521–527 (1991).

    Article  CAS  Google Scholar 

  35. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  36. Ashery, U. et al. Munc13-1 acts as a priming factor for large-dense core vesicles in bovine chromaffin cells. EMBO J. 19, 3586–3596 (2000).

    Article  CAS  Google Scholar 

  37. Brose, N., Rosenmund, C. & Rettig, J. Regulation of transmitter release by Unc-13 and its homologues. Curr. Opin. Neurobiol. 10, 303–311 (2000).

    Article  CAS  Google Scholar 

  38. Fykse, E. M., Li, C. & Südhof, T. C. Phosphorylation of rabphilin-3A by Ca2+/calmodulin- and cAMP-dependent protein kinases in vitro. J. Neurosci. 15, 2385–2395 (1995).

    Article  CAS  Google Scholar 

  39. Lonart, G. & Südhof, T. C. Region-specific phosphorylation of rabphilin in mossy fiber nerve terminals of the hippocampus. J. Neurosci. 18, 634–640 (1998).

    Article  CAS  Google Scholar 

  40. Castillo, P. E. et al. The synaptic vesicle protein rab3A is essential for mossy fiber long term potentiation in the hippocampus. Nature 388, 590–593 (1997).

    Article  CAS  Google Scholar 

  41. Geppert, M. et al. Rab3A functions in neurotransmitter release. Nature 369, 493–497 (1994).

    Article  CAS  Google Scholar 

  42. Li, C. et al. Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron 13, 885–898 (1994).

    Article  CAS  Google Scholar 

  43. Lonart, G., Janz, R., Johnson, K. M. & Südhof, T. C. Mechanism of action of rab3A in mossy fiber LTP. Neuron 21, 1141–1150 (1998).

    Article  CAS  Google Scholar 

  44. Yokoyama, C. T., Sheng, Z-H., & Catterall, W. A. Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J. Neurosci. 17, 6929–6938 (1997).

    Article  CAS  Google Scholar 

  45. Sheng, Z-H., Rettig, J., Cook, T. & Catterall, W. A. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379, 451–454 (1996).

    Article  CAS  Google Scholar 

  46. Dunkley, P. R. et al. A rapid percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res. 441, 59–71 (1988).

    Article  CAS  Google Scholar 

  47. Yan, Z., Feng, J., Fienberg, A. A. & Greengard, P. D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc. Natl Acad. Sci. USA 96, 11607–11612 (1999).

    Article  CAS  Google Scholar 

  48. Diamond, J. S., Bergles, D. E. & Jahr, C. E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21, 425–433 (1998).

    Article  CAS  Google Scholar 

  49. Ashery, U., Betz, A., Xu, T., Brose, N. & Rettig, J. An efficient method for infection of adrenal chromaffin cells using the Semliki Forest virus gene expression system. Eur. J. Cell Biol. 78, 525–532 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Su for constructs of pSFV1-Snapin mutants, C. M. Gerwin, A. Bührmann and F. Friedlein for technical assistance, X. Zheng for synaptsome preparations, J. S. Diamond for hippocampal slices, M. Takahashi for antibodies, and J. W. Nagle for DNA sequencing. We also thank H. Gainer, C. T. Yokoyama, S. Das and J. Coulombe for comments on the manuscript, and E. Neher for continuous support. This work was supported by the intramural research program of NINDS, NIH (to Z-H. S.), the Deutsche Forschungsgemeinschaft (to J.R.), an EU Network Grant (to U.A.), and the HHMI-NIH Research Scholars Program (to M.G.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Hang Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chheda, M., Ashery, U., Thakur, P. et al. Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol 3, 331–338 (2001). https://doi.org/10.1038/35070000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing