Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of E2F transcription by cyclin E–Cdk2 kinase mediated through p300/CBP co-activators

Abstract

The E2F proteins form a family of transcription factors that regulate the transition from the G1 to the S phase in the cell cycle. E2F activity is regulated by members of the retinoblastoma protein (pRb) family, ensuring the tight control of E2F-responsive genes. During the G1 phase, phosphorylation of pRb by cyclin-dependent kinases (CDKs), most notably cyclin D–CDK complexes, releases pRb from E2F, facilitating cell-cycle progression by the timely induction of E2F-targeted genes such as cyclin E. However, it is not known whether E2F proteins are directly targeted by CDKs. Here we show that E2F-5 is phosphorylated by the cyclin E–Cdk2 complex, which functions in the late G1 phase, but not by the early-G1-phase-acting cyclin D–CDK complex. A phosphorylation site in the trans-activation domain of E2F-5 stimulates transcription and cell-cycle progression by the recruitment of the p300/CBP family of co-activators, whose binding to E2F-5 is stabilized upon phosphorylation by cyclin E–Cdk2. These results indicate that E2F activity may be directly regulated by cyclin E–Cdk2, and imply an autoregulatory mechanism for cell-cycle-dependent transcription through the CDK-stimulated interaction of E2F with p300/CBP co-activators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E2F-5 is regulated by phosphorylation during cell-cycle progression.
Figure 2: Mutant derivatives of E2F-5.
Figure 3: A threonine residue at position 251 of E2F-5 is phosphorylated by cyclin E–Cdk2.
Figure 4: Cyclin E–Cdk2 stimulates E2F-5-dependent transcription.
Figure 5: Cyclin E–Cdk2 augments the interaction of p300 with E2F-5.
Figure 6: CDK regulation of E2F activity.

Similar content being viewed by others

References

  1. Slansky, J. E. & Farnham, P. J. Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol. Immunol. 208, 1–30 ( 1996).

    CAS  PubMed  Google Scholar 

  2. Dyson, N. The regulation of E2F by pRb-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  Google Scholar 

  3. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  4. Lam, E. W. F. & La Thangue, N. B. DP and E2F proteins: co-ordinating transcription with cell cycle progression. Curr. Opin. Cell. Biol. 6, 859–866 ( 1994).

    Article  CAS  Google Scholar 

  5. Sherr, C. J. Mammalian G1 kinases. Cell 73, 1059– 1065 (1993).

    Article  CAS  Google Scholar 

  6. Hinds, P. W. et al. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993 –1006 (1992).

    Article  CAS  Google Scholar 

  7. Hatakeyama, M., Brill, J. A., Fink, G. R. & Weinberg, R. A. Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes Dev. 8, 1759– 1771 (1994)

    Article  CAS  Google Scholar 

  8. Koff, A. et al. Formation and activation of a cyclin E-CDK2 complex during the G1 phase of the human cell cycle. Science 257, 1689–1694 (1992).

    Article  CAS  Google Scholar 

  9. Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M. & Pagano, M. Human cyclin E, a nuclear protein essential for the G1 to S phase transition. Mol. Cell Biol. 15, 2612–2624 (1995).

    Article  CAS  Google Scholar 

  10. Lukas, J. et al. Cyclin E-induced S phase without activation of the Rb/E2F pathway . Genes Dev. 11, 1479–1492 (1997).

    Article  CAS  Google Scholar 

  11. Lundberg, A. S. & Weinberg, R. A. Functional inactivation of the retinoblastoma protein reuqires sequential modification by at least two distinct cyclin-CDK complexes. Mol. Cell. Biol. 18, 753–761 ( 1998).

    Article  CAS  Google Scholar 

  12. Sherr, C. J. Cancer cell cycles. Science 274, 1672– 1677 (1996).

    Article  CAS  Google Scholar 

  13. Alevizopoulos, K., Vlach, J., Hennecke, S. & Amati, B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4aand of hypophosphorylated retinoblastoma family proteins. EMBO J. 16, 5322–5333 (1997).

    Article  CAS  Google Scholar 

  14. Zhang, H. S., Postigo, A. A. & Dean, D. C. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFβ, and contact inhibition. Cell 97, 53– 61 (1999).

    Article  CAS  Google Scholar 

  15. Botz, J. et al. Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter. Mol. Cell. Biol. 16, 3401–3409 (1996).

    Article  CAS  Google Scholar 

  16. Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    Article  CAS  Google Scholar 

  17. Weintraub, S. J., Prater, C. A. & Dean, D. C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358, 259–261 (1992).

    Article  CAS  Google Scholar 

  18. Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463– 473 (1998).

    Article  CAS  Google Scholar 

  19. Beijersbergen, R. L. et al. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev. 8, 2680–2690 (1994).

    Article  CAS  Google Scholar 

  20. Buck, V. et al. Molecular and functional characterisation of E2F-5, a new member of the E2F family. Oncogene 11, 31– 38 (1995).

    CAS  PubMed  Google Scholar 

  21. Hijmans, E. M., Voorhoeve, P. M., Beijersbergen, R. L, van’t Veer, L. J. & Bernards, R. E2F-5, a new E2F family member that interacts with p130 in vivo. Mol. Cell. Biol. 15, 3082–3089 (1995).

    Article  CAS  Google Scholar 

  22. Krek, W., Xu, G., & Livingston, D. M. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 83, 1149–1158 (1995).

    Article  CAS  Google Scholar 

  23. Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biol. 1, 14–19 (1999 ).

    Article  CAS  Google Scholar 

  24. Peeper, D. S. et al. Phosphorylation of a specific cdk site in E2F-1 affects its electrophoretic mobility and promotes pRB-binding in vitro. Oncogene 10, 39–48 ( 1994).

    Google Scholar 

  25. Kitagawa, M. et al. Phosphorylation of E2F-1 by cyclin A-cdk2. Oncogene 10, 229–236 ( 1995).

    CAS  PubMed  Google Scholar 

  26. Shikama, N., Lyon, J. & La Thangue, N. B. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7, 230–236 (1997).

    Article  CAS  Google Scholar 

  27. Yang, X-Y., Ogryzko, V. V., Nishikawa, J-I., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenovirus oncoprotein E1A. Nature 382, 319– 324 (1996).

    Article  CAS  Google Scholar 

  28. Chen, H. et al. Nuclear receptor co-activator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 ( 1997).

    Article  CAS  Google Scholar 

  29. Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

  30. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

  31. Ogryzko, V. V., Schitz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional co-activators p300 and CBP are histone acetyltransferases. Cell 87 , 953–959 (1996).

    Article  CAS  Google Scholar 

  32. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 ( 1997).

    Article  CAS  Google Scholar 

  33. Trouche, D. & Kouzarides, T. E2F-1 and E1A 12S have a homologous activation domain regulated by RB and CBP. Proc. Natl. Acad. Sci. USA 93, 1439–1442 ( 1996).

    Article  CAS  Google Scholar 

  34. Lee, C-W., Sørensen, T. S., Shikama, N. & La Thangue, N. B. Functional interplay between p53 and E2F through co-activator p300. Oncogene 16, 2695–2710 ( 1998).

    Article  CAS  Google Scholar 

  35. Johnston, L. H. & Lowndes, N. F. Cell cycle control of DNA synthesis in budding yeast. Nucleic Acids Res. 20, 2403–2410 (1992).

    Article  CAS  Google Scholar 

  36. Taylor, I. A., Treiber, M. K., Olivi, L. & Smerdon, S. J. The X-ray structure of the DNA-binding domain from the Saccharomyces cerevisiae cell cycle transcription factor Mbp1 at 2.1 Å resolution. J. Mol. Biol. 272, 1–8 ( 1997).

    Article  CAS  Google Scholar 

  37. Zheng, N., Fraenkel, E., Pabo, C. O. & Pavletich, N. P. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev. 13, 666– 674 (1999).

    Article  CAS  Google Scholar 

  38. Chrivia, J.C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993.)

    Article  CAS  Google Scholar 

  39. Lambert, P. F., Kashanchi, F., Radonovich, M. F., Shiekhattar, R. & Brady, J. N. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 49, 33048–33053 ( 1998).

    Article  Google Scholar 

  40. Shikama, N. et al. A new co-factor for p300 that regulates the p53 response. Mol. Cell 4, 365–376 ( 1999).

    Article  CAS  Google Scholar 

  41. Bandara, L. R., Buck, V. M., Zamanian, M., Johnston, L. H. & La Thangue, N. B. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F . EMBO J. 12, 4317–4324 (1993).

    Article  CAS  Google Scholar 

  42. Allen, K. E., de la Luna, S., Kerkhoven, R. M., Bernards, R. & La Thangue, N. B. Distinct mechanisms of nuclear accumulation regulate the functional consequence of E2F transcription factors . J. Cell Sci. 110, 2819– 2831 (1997).

    CAS  PubMed  Google Scholar 

  43. Zerfass-Thome, K. et al. p27(KIP1) blocks cyclin E-dependent transactivation of cyclin A gene expression. Mol. Cell Biol. 17, 407 –415 (1997).

    Article  CAS  Google Scholar 

  44. Van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell-cycle control. Science 262, 2050–2054 (1993).

    Article  CAS  Google Scholar 

  45. Desai, D., Wessling, H. C., Fisher, R. P. & Morgan, D. O. Effects of phosphorylation by CAK on cyclin binding by cdc2 and cdk2. Mol. Cell Biol. 15, 345–350 (1995).

    Article  CAS  Google Scholar 

  46. de la Luna, S., Allen, K. E., Mason, S. L. & La Thangue, N. B. Integration of a growth-suppressing BTB/POZ domain protein with the DP component of the E2F ranscription factor. EMBO J. 18, 212–228 (1999).

    Article  CAS  Google Scholar 

  47. Bandara, L.R. et al. DP-1: a cell cycle-regulated and phosphorylated component of transcription factor DRTF1/E2F which is functionally important for recognition by pRb and the adenovirus E4 orf 6/7 protein. EMBO J. 13, 3104–3114 (1994).

    Article  CAS  Google Scholar 

  48. Girling, R. et al. A new component of the transcription factor DRTF1/E2F. Nature 362, 83–87 ( 1993).

    Article  CAS  Google Scholar 

  49. de la Luna, S., Burden, M. J., Lee, C-W. & La Thangue, N.B. Nuclear accumulation of the E2F heterodimer regulated by subunit composition and alternative splicing of a nuclear localization signal. J. Cell Sci. 109 2443– 2452 (1996).

  50. Luo, K. & Sefton, B. M. Transfer of proteins to membranes facilitates both cyanogen bromide cleavage and two dimensional proteolytic mapping. Oncogene 5, 921– 923 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Eilers and D. Morgan for reagents, W. Kolch for advice on phosphopeptide mapping, M. Krstic-Demonacos and N. Shikama for comments on the manuscript and M. Caldwell for help in preparing the manuscript. This research was supported by the U.K. Medical Research Council, the Leukaemia Research Fund and the European Union.

Correspondence and requests for materials should be addressed to N.B.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. La Thangue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, L., Allen, K. & La Thangue, N. Regulation of E2F transcription by cyclin E–Cdk2 kinase mediated through p300/CBP co-activators. Nat Cell Biol 2, 232–239 (2000). https://doi.org/10.1038/35008660

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing