Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch

Abstract

Mutations in the presenilin-1 (PS1) gene are associated with Alzheimer’s disease and cause increased secretion of the neurotoxic amyloid-β peptide (Aβ). Critical intramembraneous aspartates at residues 257 and 385 are required for the function of PS1 protein. Here we investigate the biological function of a naturally occurring PS1 splice variant (PS1 Δexon 8), which lacks the critical aspartate 257. Cell lines that stably express PS1 Δexon 8 or a PS1 protein in which aspartate residue 257 is mutated secrete significant levels of Aβ, whereas Aβ generation is severely reduced in cells transfected with PS1 containing a mutation of aspartate 385. In contrast, endoproteolytic processing of Notch is almost completely inhibited in cell lines expressing any of the PS1 variants that lack one of the critical aspartates. These data indicate that PS1 may differentially facilitate γ-secretase-mediated generation of Aβ and endoproteolysis of Notch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of PS1 Δexon 8, D257A and D385N inhibit presenilin-mediated endoproteolysis and differentially affect Aβ production.
Figure 2: Quantitative analysis of β-APP CTFs and Aβ in independent cell lines.
Figure 3: Expression of the active-site mutations as well as the splice variant of PS1 equally affect the accumulation of β-APP CTFs.
Figure 4: Differential inhibition of NICD and Aβ generation in cells stably expressing PS1 Δexon 8, D257A or D385N.
Figure 5: Subcellular distribution of β-APP in cells expressing endogenous presenilins or the indicated PS1 derivatives.
Figure 6: Cell-surface accumulation of β-APP and β-APP CTFs in cells expressing PS1 Δexon 8, D257A or D385N.
Figure 7: Differential distribution of Notch epitopes in cells expressing wild-type PS1, PS1 Δexon 8, PS1(D257A) or PS1(D385N) together with NotchΔE .

Similar content being viewed by others

References

  1. Selkoe, D. J. Translating cell biology into therapeutic advances in Alzheimer’s disease . Nature 399, A23–A31 (1999).

    Article  CAS  Google Scholar 

  2. De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387 –390 (1998).

    Article  CAS  Google Scholar 

  3. Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 ( 1999).

    Article  CAS  Google Scholar 

  4. Wolfe, M. S. et al. Peptidomimetic probes and molecular modeling suggest that Alzheimer’s disease γ-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38, 4720– 4727 (1999).

    Article  CAS  Google Scholar 

  5. Leimer, U. et al. Zebrafish (Danio rerio) presenilin promotes aberrant amyloid β-peptide production and requires a critical aspartate residue for its function in amyloidogenesis . Biochemistry 38, 13602– 13609 (1999).

    Article  CAS  Google Scholar 

  6. Steiner, H. et al. A loss of function mutation of presenilin-2 interferes with amyloid β-peptide production and Notch signaling. J. Biol. Chem. 274, 28669–28673 ( 1999).

    Article  CAS  Google Scholar 

  7. Shen, J. et al. Skeletal and CNS defects in presenilin-1-deficient mice. Cell 89, 629–639 ( 1997).

    Article  CAS  Google Scholar 

  8. Wong, P. C. et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288– 292 (1997).

    Article  CAS  Google Scholar 

  9. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377, 351– 354 (1995).

    Article  CAS  Google Scholar 

  10. Ye, Y., Lukinova, N. & Fortini, M. E. Neurogenic phenotypes alter Notch processing in Drosophila Presenilin mutants. Nature 398, 525– 529 (1999).

    Article  CAS  Google Scholar 

  11. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398 , 522–525 (1999).

    Article  CAS  Google Scholar 

  12. Hartmann, D., De Strooper, B. & Saftig, P. Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9, 719–727 ( 1999).

    Article  CAS  Google Scholar 

  13. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  14. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  Google Scholar 

  15. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  Google Scholar 

  16. Song, W. et al. Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations . Proc. Natl Acad. Sci. USA 96, 6959– 6963 (1999).

    Article  CAS  Google Scholar 

  17. Ray, W. J. et al. Cell surface Presenilin-1 participates in the γ-secretase-like proteolysis of Notch. J. Biol. Chem. 274, 36801–36807 (1999).

    Article  CAS  Google Scholar 

  18. Brockhaus, M. et al. Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and Notch signaling. NeuroReport 9, 1481–1486 ( 1998).

    Article  CAS  Google Scholar 

  19. Rogaev, E. I. et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376, 775– 778 (1995).

    Article  CAS  Google Scholar 

  20. Prihar, G. et al. Structure and alternative splicing of the presenilin-2 gene . NeuroReport 7, 1680–1684 (1996).

    Article  CAS  Google Scholar 

  21. Alzheimer’s Disease Collaborative Group . The structure of the presenilin-1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genet. 11, 219–222 ( 1995).

    Article  Google Scholar 

  22. Cruts, M., Hendriks, L. & van Broeckhoven, C. The presenilin genes: a new gene family involved in Alzheimer disease pathology. Hum. Mol. Genet. 5, 1449–1455 (1996).

    Article  CAS  Google Scholar 

  23. Van Broeckhoven, C. Presenilins and Alzheimer’s disease. Nature Genet. 11, 230–231 (1995).

    Article  CAS  Google Scholar 

  24. Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360, 672–674 ( 1992).

    Article  CAS  Google Scholar 

  25. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322– 325 (1992).

    Article  CAS  Google Scholar 

  26. Haass, C. et al. β-amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. Biol. Chem. 268, 3021–3024 (1993).

    CAS  PubMed  Google Scholar 

  27. Haass, C., Hung, A. Y., Selkoe, D. J. & Teplow, D. B. Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid β-amyloid protein precursor. J. Biol. Chem. 269, 17741–17748 (1994).

    CAS  PubMed  Google Scholar 

  28. Haass, C. et al. β-Secretase cleavage of β-Amyloid precursor protein with the Swedish mutation occurs within the secretory pathway after the trans-Golgi network. Nature Med. 1, 1291– 1296 (1995).

    Article  CAS  Google Scholar 

  29. Citron, M., Teplow, D. B. & Selkoe, D. J. Generation of amyloid β protein from its precursor is sequence specific. Neuron 14, 661– 670 (1995).

    Article  CAS  Google Scholar 

  30. Citron, M. et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med. 3, 67– 72 (1997).

    Article  CAS  Google Scholar 

  31. Podlisny, M. B. et al. Presenilin proteins undergo heterogeneous endoproteolysis between Thr 291 and Ala 299 and occur as stable N- and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol. Dis. 3, 325–337 (1997).

    Article  CAS  Google Scholar 

  32. Capell, A. et al. The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex . J. Biol. Chem. 273, 3205– 3211 (1998).

    Article  CAS  Google Scholar 

  33. Steiner, H. et al. Expression of Alzheimer’s disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J. Biol. Chem. 273, 32322–32331 (1998).

    Article  CAS  Google Scholar 

  34. Steiner, H. et al. The biological and pathological function of the presenilin-1 Δexon 9 mutation is independent of its defect to undergo proteolytic processing . J. Biol. Chem. 274, 7615– 7618 (1999).

    Article  CAS  Google Scholar 

  35. Steiner, H. et al. Amyloidogenic function of the Alzheimer’s disease associated presenilin-1 in the absence of endoproteolysis. Biochemistry 38, 14600–14605 (1999).

    Article  CAS  Google Scholar 

  36. Walter, J. et al. Proteolytic processing of the Alzheimer disease-associated presenilin-1 generates an in vivo substrate for protein kinase C. Proc. Natl Acad. Sci. USA 94, 5349– 5354 (1997).

    Article  CAS  Google Scholar 

  37. Thinakaran, G. et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181– 190 (1996).

    Article  CAS  Google Scholar 

  38. Thinakaran, G. et al. Evidence that levels of presenilin (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272, 28415–28422 ( 1997).

    Article  CAS  Google Scholar 

  39. Levitan, D. et al. Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 14940–14944 (1996).

    Article  CAS  Google Scholar 

  40. Baumeister, R. et al. Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate Notch signalling in Caenorhabditis elegans. Genes Funct. 1, 149–159 (1997).

  41. Naruse, S. et al. Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213– 1221 (1998).

    Article  CAS  Google Scholar 

  42. Linstedt, A. D. & Hauri, H. P. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol. Biol. Cell 4, 679– 693 (1993).

    Article  CAS  Google Scholar 

  43. Haass, C., Koo, E. H., Mellon, A., Hung, A. Y. & Selkoe, D. J. Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments . Nature 357, 500–503 (1992).

    Article  CAS  Google Scholar 

  44. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126– 129 (1992).

    Article  CAS  Google Scholar 

  45. Kang, J. et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  Google Scholar 

  46. Chan, Y-M & Jan, Y. N. Presenilins, processing of β-amyloid precursor protein, and notch-signaling. Neuron 23, 201–204 (1999).

    Article  Google Scholar 

  47. Lichtenthaler, P. et al. Mechanism of the cleavage specificity of Alzheimer’s disease gamma-secretase by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc. Natl Acad. Sci. USA 96, 3053–3058 ( 1999).

    Article  CAS  Google Scholar 

  48. Wild-Bode, C. et al. Intracellular generation and accumulation of Amyloid β-peptide terminating at amino acid 42. J. Biol. Chem. 272, 16085–16088 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (HA 1737/6-1) and the Boehringer Ingelheim K.G. We thank R. Kopan for the Notch cDNA construct, D. J. Selkoe for the PS1(D257A) cDNA, E. Koo for the monoclonal antibodies to β-APP, H-P. Hauri for the anti-giantin antibody, and P. Kahle for helpful discussions.

Correspondence and requests for materials should be addressed to C.H.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capell, A., Steiner, H., Romig, H. et al. Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch. Nat Cell Biol 2, 205–211 (2000). https://doi.org/10.1038/35008626

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing