Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Dynamic proteins and a cytoskeleton in bacteria

The application of modern fluorescence microscopic methods to bacteria has revolutionized our view of their subcellular organization. Many proteins are now known to be targeted with exquisite precision to specific locations in the cell, or to undergo rapid directed changes in localization. Structural and functional homologues of tubulin (FtsZ) and actin (MreB) are now indisputably present in bacteria, overturning the textbook view that the cytoskeleton is unique to eukaryotes. These advances are stimulating a radical rethink about how various fundamental processes are organised in bacteria.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct cellular addresses of cell cycle and morphogenic proteins in bacteria.
Figure 2: Some patterns of protein targeting in a typical bacterial cell (B. subtilis).

References

  1. Shapiro, L. & Losick, R. Cell 100, 89–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Yanofsky, C. J. Bacteriol 182, 1–8 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lewis, P.J., Thaker, S.D. & Errington, J. EMBO J. 19, 710–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mascarenhas, J., Weber, M.H. & Graumann, P.L. EMBO Reports 2, 685–689 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weber, M.H., Volkov, A.V., Fricke, I., Marahiel, M.A. & Graumann, P.L. J. Bacteriol. 183, 6435–6443 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iborra, F.J., Jackson, D.A. & Cook, P.R. Science 293, 1139–1142 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Hozak, P., Hassan, A.B., Jackson, D.A. & Cook, P.R. Cell 73, 361–373 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Lemon, K.P. & Grossman, A.D. Science 282, 1516–1519 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Lemon, K.P. & Grossman, A.D. Genes Dev. 15, 2031–2041 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Sawitzke, J. & Austin, S. Mol. Microbiol. 40, 786–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Jacob, F., Brenner, S. & Cuzin, F. Cold Sring Harbor Symposia on Quantitative Biology 28, 329–348 (1963).

    Google Scholar 

  12. Glaser, P. et al. Genes Dev. 11, 1160–1168 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Webb, C.D. et al. Cell 88, 667–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Gordon, G.S. & Wright, A. Ann. Rev. Microbiol. 54, 681–708 (2000).

    Article  CAS  Google Scholar 

  15. Raskin, D.M. & De Boer, P.A.J. Proc. Natl Acad. Sci. USA 96, 4971–4976 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Boer, P.A.J., Crossley, R.E. & Rothfield, L.I. Cell 56, 641–649 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Margolin, W. Curr. Opin. Microbiol. 4, 647–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, Z. & Lutkenhaus, J. Mol. Cell 7, 1337–1343 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hale, C.A., Meinhardt, H. & de Boer, P.A. EMBO J. 20, 1563–1572 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu, Z., Gogol, E.P. & Lutkenhaus, J. Proc. Natl Acad. Sci. USA 99, 6761–6766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu, X., Shih, Y.-L. & Rothfield, L.I. Proc. Natl Acad. Sci. USA 98, 980–985 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meinhardt, H. & de Boer, P.A. Proc. Natl Acad. Sci. USA 98, 14202–14207 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Howard, M., Rutenberg, A.D. & de Vet, S. Phys. Rev. Lett. 87, 278102-1–278102-4 (2001).

    Article  Google Scholar 

  24. Kruse, K. Biophys J. 82, 618–627 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marston, A.L., Thomaides, H.B., Edwards, D.H., Sharpe, M.E. & Errington, J. Genes Dev. 12, 3419–3430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marston, A.L. & Errington, J. Mol. Cell 4, 673–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Quisel, J.D., Lin, D.C.-H. & Grossman, A.D. Mol. Cell 4, 665–672 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Jensen, R.B., Wang, S.C. & Shapiro, L. Nature Rev. Mol. Cell Biol. 3, 167–176 (2002).

    Article  CAS  Google Scholar 

  29. Bi, E. & Lutkenhaus, J. Nature 354, 161–164 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, J.C. & Beckwith, J. Mol. Microbiol. 42, 395–413 (2001).

    Article  PubMed  Google Scholar 

  31. Errington, J. & Daniel, R.A. in Bacillus subtilis and its relatives: from genes to cells (eds Sonenshein, L., Losick, R. & Hoch, J.A.) 97–109 (American Society for Microbiology, Washington, D.C., 2001).

    Google Scholar 

  32. Margolin, W. FEMS Microbiol. Rev. 24, 531–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Lutkenhaus, J. & Addinall, S.G. Ann. Rev. Biochem. 66, 93–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Scheffers, D. & Driessen, A.J. FEBS Lett. 506, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Löwe, J. & Amos, L.A. Nature 391, 203–206 (1998).

    Article  PubMed  Google Scholar 

  36. Stricker, J., Maddox, P., Salmon, E.D. & Erickson, H.P. Proc. Natl Acad. Sci. USA 99, 3171–3175 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vollmer, W. & Höltje, J.-V. Curr. Opin. Microbiol. 4, 626–633 (2001).

    Article  Google Scholar 

  38. Bork, P., Sander, C. & Valencia, A. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, L.J.F., Carballido-Lopez, R. & Errington, J. Cell 104, 913–922 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. van den Ent, F., Amos, L.A. & Löwe, J. Nature 413, 39–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Møller-Jensen, J., Jensen, R.B., Löwe, J. & Gerdes, K. EMBO J. 21, 3119–3127 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Møller-Jensen, J., Gerdes, K. & Löwe, J. EMBO J. (2002).

Download references

Acknowledgements

Work in the Errington lab is supported by grants and a Senior Research Fellowship (to J.E.) from the Biotechnology and Biological Sciences Research Council (BBSRC). I am indebted to many colleagues in the lab who have contributed to our bacterial cell imaging work over the last few years, especially to P.J. Lewis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Errington, J. Dynamic proteins and a cytoskeleton in bacteria. Nat Cell Biol 5, 175–178 (2003). https://doi.org/10.1038/ncb0303-175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0303-175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing