Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities

Abstract

The guanosine tri-phosphatase Ran stimulates assembly of microtubule spindles. However, it is not known what aspects of the microtubule cytoskeleton are subject to regulation by Ran in mitosis. Here we show that Ran–GTP stimulates microtubule assembly by increasing the rescue frequency of microtubules three- to eightfold. In addition to changing microtubule dynamics, Ran–GTP also alters the balance of motor activities, partly as a result of an increase in the amount of motile Eg5, a plus-end-directed microtubule motor that is essential for spindle formation. Thus, Ran regulates multiple processes that are involved in spindle assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of microtubule dynamics in CSF-arrested extracts in the presence or absence of Ran(L43E).
Figure 2: Distributions of microtubule growth and shrinkage rates.
Figure 3: Microtubule structures formed in CSF-arrested egg extracts.
Figure 4: Ran(L43E) stimulates plus-end-directed movement of microtubule seeds.
Figure 5: Microtubule seeds lead with their minus ends when moving towards the plus or minus end of the aster.
Figure 6: Ran–GTP alters the behaviour of Eg5 on microtubule asters.

Similar content being viewed by others

References

  1. Waters, J. C. & Salmon, E. Pathways of spindle assembly. Curr. Opin. Cell Biol. 9, 37–43 (1997).

    Article  CAS  Google Scholar 

  2. Heald, R. & Walczak, C. E. Microtubule-based motor function in mitosis. Curr. Opin. Struc. Biol. 9, 268–274 (1999).

    Article  CAS  Google Scholar 

  3. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1998).

    Article  Google Scholar 

  4. Cassimeris, L. Accessory protein regulation of microtubule dynamics throughout the cell cycle . Curr. Opin. Cell Biol. 11, 134– 141 (1999).

    Article  CAS  Google Scholar 

  5. Belmont, L. D., Hyman, A. A., Sawin, K. E. & Mitchison, T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62, 579– 589 (1990).

    Article  CAS  Google Scholar 

  6. Verde, F., Dogterom, M., Stelzer, E., Karsenti, E. & Leibler, S. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J. Cell Biol. 118, 1097– 108 (1992).

    Article  CAS  Google Scholar 

  7. Gliksman, N. R., Parsons, S. F. & Salmon, E. D. Okadaic acid induces interphase to mitotic like microtubule dynamic instability by inactivating rescue. J. Cell Biol. 119, 1271–1276 (1992).

    Article  CAS  Google Scholar 

  8. Zhai, Y., Kronebusch, P. J., Simon, P. M. & Borisy, G. G. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis . J. Cell Biol. 135, 201– 214 (1996).

    Article  CAS  Google Scholar 

  9. Tournebize, R., Heald, R. & Hyman, A. Role of chromosomes in assembly of meiotic and mitotic spindles. Prog. Cell Cycle Res. 3, 271– 84 (1997).

    Article  CAS  Google Scholar 

  10. Holy, T. E. & Liebler, S. Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl Acad. Sci. USA 91, 5682–5685 ( 1994).

    Article  CAS  Google Scholar 

  11. Andersen, S. S. L. Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. Bioessays 21, 53– 60 (1999).

    Article  CAS  Google Scholar 

  12. Karsenti, E., Newport, J., Hubble, R. & Kirschner, M. W. Interconversion of metaphase and interphase microtubule arrays as studied by the injection of centrosomes and nuclei in eggs. J. Cell Biol. 98 , 1730–1745 (1984).

    Article  CAS  Google Scholar 

  13. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–5 (1996).

    Article  CAS  Google Scholar 

  14. Zhang, D. & Nicklas, R. Chromosomes initiate spindle assembly upon experimental dissolution of the nuclear envelope in grasshopper spermatocytes . J. Cell Biol. 131, 1125– 31 (1995).

    Article  CAS  Google Scholar 

  15. Zhang, D. & Nicklas, R. The impact of chromosomes and centrosomes on spindle assembly as observed in living cells. J Cell Biol 129, 1287–300 (1995).

    Article  CAS  Google Scholar 

  16. Dogterom, M., Felix, M., Guet, C. & Leibler, S. Influence of M-phase chromatin on the anisotropy of microtubule asters. J. Cell Biol. 133, 125–40 ( 1996).

    Article  CAS  Google Scholar 

  17. Hoyt, M. A. & Giese, J. R. Genetic analysis of mitotic spindles . Annu. Rev. Genet. 30, 7– 33 (1996).

    Article  CAS  Google Scholar 

  18. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motors. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  19. Mountain, V., Simerly, C., Howard, L., Schatten, G. & Compton, D. A. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J. Cell Biol. 147, 351–365 (1999).

    Article  CAS  Google Scholar 

  20. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241– 253 (2000).

    Article  CAS  Google Scholar 

  21. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bi-polarity . Curr. Biol. 8, 903–913 (1998).

    Article  CAS  Google Scholar 

  22. Kalab, P., Pu, R. T. & Dasso, M. C. The ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9, 481–484 ( 1999).

    Article  CAS  Google Scholar 

  23. Wilde, A. & Zheng, Y. Stimulation of microtubule aster and spindle assembly by the small GTPase Ran. Science 284 , 1359–1362 (1999).

    Article  CAS  Google Scholar 

  24. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356– 1358 (1999).

    Article  CAS  Google Scholar 

  25. Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178 –181 (1999).

    Article  CAS  Google Scholar 

  26. Zhang, C., Hughes, M. & Clarke, P. R. Ran–GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J. Cell Sci. 112, 2453–2461 (1999).

    CAS  PubMed  Google Scholar 

  27. Sawin, K. E., LeGuellec, K., Philippe, M. & Mitchison, T. J. Mitotic spindle organization by a plus-end directed microtubule motor. Nature 359, 540–543 ( 1992).

    Article  CAS  Google Scholar 

  28. Blangy, A. et al. Phosphorylation of p34 cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bi-polar spindle formation in vivo. Cell 83, 1159– 1169 (1995).

    Article  CAS  Google Scholar 

  29. Meyer, T. U. et al. Small molecule inhibitor of mitotic spindle polarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  Google Scholar 

  30. Walczak, C. E., Verma, S. & Mitchison, T. J. XCTK2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J. Cell Biol. 136, 859–870 ( 1997).

    Article  CAS  Google Scholar 

  31. Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization . J. Cell Biol. 138, 615– 28 (1997).

    Article  CAS  Google Scholar 

  32. Sawin, K. E. & Mitchison, T. J. Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc. Natl Acad. Sci. USA 92, 4289–4293 (1995).

    Article  CAS  Google Scholar 

  33. Theurkauf, W. & Hawley, R. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–80 (1992).

    Article  CAS  Google Scholar 

  34. Mitchison, T. J. & Kirschner, M. W. Isolation of mammalian centrosomes. Methods Enzymol. 134, 261–268 (1986).

    Article  CAS  Google Scholar 

  35. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  Google Scholar 

  36. Tournebize, R. et al. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO. J 16, 5537–5549 (1997).

    Article  CAS  Google Scholar 

  37. Fanara, P., Oback, B., Ashman, K., Podtelejnikov, P. & Brandt, R. Identification of MINUS, a small polypeptide that functions as a microtubule nucleation suppressor. EMBO J. 18, 565–577 (1999).

    Article  CAS  Google Scholar 

  38. Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule based motors by fluorescence. J. Cell Sci. (Suppl.) 14, 125–127 (1991).

    Article  CAS  Google Scholar 

  39. Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. & Karsenti, E. Ran–GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nature Cell Biol. 3, 228–234 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kapoor and T. Mitchison (Harvard Medical School) for Monastrol, O. Martin for purifying Ran and for critical reading of the manuscript, L. Cassimeris (Lehigh Univ.) for advice on analysing microtubule dynamics, E. Salmon (Univ. North Carolina) for advice on image analysis, A. Khodjakov (Wadsworth Center) for PKG cells used for centrosome isolation, and R. Gunawardane for comments on the manuscript. This work was supported by a postdoctoral fellowship from the American Cancer Society (to C.W.), NIH grants (to Y.Z. and C.E.W.), and a Pew Scholar's award (to Y.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixian Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, A., Lizarraga, S., Zhang, L. et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 3, 221–227 (2001). https://doi.org/10.1038/35060000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35060000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing