Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Growth-factor-dependent mitogenesis requires two distinct phases of signalling

Abstract

Prolonged and continuous exposure to growth factors is required to commit cells to the cell cycle. Here we show that the prolonged requirement for growth factor can be replaced with two short pulses of mitogen. The first pulse of growth factor moves the cell through the initial segment of the G0 to S interval. This initial pulse also makes cells responsive to a second pulse of growth factor, which engages components of the cell-cycle machinery necessary for progression into S phase. We also show that activation of MAP kinase kinase (MEK) and induction of the transcription factor c-Myc are sufficient to drive the first, but not the second, phase of signalling. Furthermore, synthetic phosphatidylinositol-3-OH kinase (PI(3)K) lipid products are sufficient to drive the second phase of signalling, but not the first. These findings suggest that there is a common signalling cascade by which mitogens drive arrested cells into the cell cycle, and that this cascade involves the temporally coordinated input of MEK, c-Myc and PI(3)K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G0 cells can be driven into S phase by either continuous or discontinuous treatment with PDGF.
Figure 2: Discontinuous stimulation with PDGF drives the cell-cycle machinery and progression through the cell cycle.
Figure 3: c-Myc and MEK are sufficient to drive the initial phase of signalling.
Figure 4: Growth factors differ in their ability to drive the initial phase of signalling.
Figure 5: PI(3)K lipid products can substitute for PDGF during the second, but not the first phase of the discontinuous treatment assays.
Figure 6: Model of growth factor events of the early cell cycle.

Similar content being viewed by others

References

  1. Pardee, A. B. A restriction point for control of normal animal cell proliferation. Proc. Natl Acad. Sci. USA 71, 1286– 1290 (1974).

    Article  CAS  Google Scholar 

  2. Pardee, A. B. G1 events and regulation of cell proliferation. Science 246, 603–608 (1989).

    Article  CAS  Google Scholar 

  3. Planas-Silva, M. D. & Weinberg, R. A. The restriction point and control of cell proliferation. Curr. Opin. Cell Biol. 9, 768–772 ( 1997).

    Article  CAS  Google Scholar 

  4. Aktas, H., Cai, H. & Cooper, G. M. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol. Cell. Biol. 17, 3850–3857 (1997).

    Article  CAS  Google Scholar 

  5. Winston, J. T., Coats, S. R., Wang, Y. Z. & Pledger, W. J. Regulation of the cell cycle machinery by oncogenic ras. Oncogene 12, 127–134 ( 1996).

    CAS  PubMed  Google Scholar 

  6. Kerkhoff, E. & Rapp, U. R. Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol. Cell. Biol. 17, 2576–2586 ( 1997).

    Article  CAS  Google Scholar 

  7. Sewing, A., Wiseman, B., Lloyd, A. C. & Land, H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5588–5597 ( 1997).

    Article  CAS  Google Scholar 

  8. Lloyd, A. C. et al. Cooperating oncogenes converge to regulate cyclin/cdk complexes . Genes Dev 11, 663-677 (1997 ).

  9. Cheng, M., Sexl, V., Sherr, C. J. & Roussel, M. F. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc. Natl Acad. Sci. USA 95, 1091–1096 ( 1998).

    Article  CAS  Google Scholar 

  10. Aziz, N., Cherwinski, H. & McMahon, M. Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol. Cell. Biol. 19, 1101–1115 ( 1999).

    Article  CAS  Google Scholar 

  11. Balmanno, K. & Cook, S. J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18, 3085 –3097 (1999).

    Article  CAS  Google Scholar 

  12. Peeper, D. S. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177– 181 (1997); erratum ibid. 386, 521 (1997).

    Article  CAS  Google Scholar 

  13. Marshall, C. How do small GTPase signal transduction pathways regulate cell cycle entry? Curr. Opin. Cell Biol. 11, 732– 736 (1999).

    Article  CAS  Google Scholar 

  14. Kerkhoff, E. & Rapp, U. R. Cell cycle targets of Ras/Raf signalling . Oncogene 17, 1457–1462 (1998).

    Article  CAS  Google Scholar 

  15. Mateyak, M. K., Obaya, A. J. & Sedivy, J. M. c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Bio.l 19, 4672–4683 (1999).

    Article  CAS  Google Scholar 

  16. Muller, D. et al. Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene 15, 2561–2576 (1997).

    Article  CAS  Google Scholar 

  17. Perez-Roger, I., Solomon, D. L., Sewing, A. & Land, H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes. Oncogene 14, 2373–2381 ( 1997).

    Article  CAS  Google Scholar 

  18. Vlach, J., Hennecke, S., Alevizopoulos, K., Conti, D. & Amati, B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J. 15, 6595–6604 (1996).

    Article  CAS  Google Scholar 

  19. Perez-Roger, I., Kim, S. H., Griffiths, B., Sewing, A. & Land, H. Cyclins D1 and D2 mediate Myc-induced proliferation via sequestration of p27(Kip1) and p21(Cip1). EMBO J. 18, 5310–5320 ( 1999).

    Article  CAS  Google Scholar 

  20. Obaya, A. J., Mateyak, M. K. & Sedivy, J. M. Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene 18, 2934– 2941 (1999).

    Article  CAS  Google Scholar 

  21. Dobrowolski, S., Harter, M. & Stacey, D. W. Cellular ras activity is required for passage through multiple points of the G0/G1 phase in BALB/c 3T3 cells. Mol. Cell. Biol. 14, 5441–5449 ( 1994).

    Article  CAS  Google Scholar 

  22. Roche, S., Koegl, M. & Courtneidge, S. A. The phosphatidylinositol 3-kinase alpha is required for DNA synthesis induced by some, but not all, growth factors. Proc. Natl Acad. Sci. USA 91, 9185– 9189 (1994).

    Article  CAS  Google Scholar 

  23. Bennett, A. M., Hausdorff, S. F., O'Reilly, A. M., Freeman, R. M. & Neel, B. G. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Mol. Cell. Biol. 16, 1189–1202 (1996).

    Article  CAS  Google Scholar 

  24. Takuwa, N. & Takuwa, Y. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts . Mol. Cell. Biol. 17, 5348– 5358 (1997).

    Article  CAS  Google Scholar 

  25. Jones, S. M., Klinghoffer, R., Prestwich, G. D., Toker, A. & Kazlauskas, A. PDGF induces an early and a late wave of PI 3-kinase activity, and only the late wave is required for progression through G1. Curr. Biol. 9, 512– 521 (1999).

    Article  CAS  Google Scholar 

  26. Balciunaite, E., Jones, S. M., Toker, A. & Kazlauskas, A. PDGF initiates two distinct phases of PKC activity that make unequal contributions to the G0 to S transition. Curr. Biol. 10, 261– 267 (2000).

    Article  CAS  Google Scholar 

  27. Alberts, B. et al. Molecular Biology of The Cell (eds Robetson, M. & Adams, R.) (Garland, New York, 1994).

    Google Scholar 

  28. Sherr, C. J. G1 phase progression: cycling on cue. Cell 79, 551–555 (1994).

    Article  CAS  Google Scholar 

  29. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  30. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  Google Scholar 

  31. Land, H., Chen, A. C., Morgenstern, J. P., Parada, L. F. & Weinberg, R. A. Behavior of myc and ras oncogenes in transformation of rat embryo fibroblasts. Mol. Cell. Biol. 6, 1917–1925 (1986).

    Article  CAS  Google Scholar 

  32. Leone, G., DeGregori, J., Sears, R., Jakoi, L. & Nevins, J. R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387, 422–426 (1997); erratum ibid. 387, 932 (1997).

    Article  CAS  Google Scholar 

  33. Amati, B., Alevizopoulos, K. & Vlach, J. Myc and the cell cycle. Front. Biosci. 3, D250–D268 (1998).

    Article  CAS  Google Scholar 

  34. Daub, H., Weiss, F. U., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557– 560 (1996).

    Article  CAS  Google Scholar 

  35. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  Google Scholar 

  36. Valius, M. & Kazlauskas, A. Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal . Cell 73, 321–334 (1993).

    Article  CAS  Google Scholar 

  37. Klinghoffer, R. A., Duckworth, B., Valius, M., Cantley, L. & Kazlauskas, A. Platelet-derived growth factor-dependent activation of phosphatidylinositol 3-kinase is regulated by receptor binding of SH2-domain-containing proteins which influence Ras activity. Mol. Cell. Biol. 16, 5905–5914 (1996).

    Article  CAS  Google Scholar 

  38. Roussel, M. F., Theodoras, A. M., Pagano, M. & Sherr, C. J. Rescue of defective mitogenic signaling by D-type cyclins. Proc. Natl Acad. Sci. USA 92, 6837–6841 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Roussel for both the NIH3T3 cells expressing inducible MEK1* and the c-Myc retrovirus. We also appreciate the critical input of C. Sherr, M. Roussel, J. Pledger, C. Stiles, T. Langan, E. Balciunaite, M. Nickas and Y. Ikuno. This work was supported by an NIH grant (to A.K.) and an NIH postdoctoral fellowship (to S.M.J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrius Kazlauskas.

Supplementary information

Figure 1 Continuous exposure to PDGF for less than 10 h compromises the mitogenic response.

Figure 2 MEK activity is necessary for the initial phase of signalling. (PDF 122 kb)

Figure 3 Expression of c-Myc to physiological levels does not deregulate growth factor-dependence for cell-cycle progression.

Figure 4 A 30-min pulse of PDGF is required to fully activate Erk and elevate c-Myc.

Figure 5 The second phase of signalling is transient and can be driven by synthetic PI(3)K lipid products.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, S., Kazlauskas, A. Growth-factor-dependent mitogenesis requires two distinct phases of signalling . Nat Cell Biol 3, 165–172 (2001). https://doi.org/10.1038/35055073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing