Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm

Abstract

The anteroposterior identity of cranial neural crest cells is thought to be preprogrammed before these cells emigrate from the neural tube. Here we test this assumption by developing techniques for transposing cells in the hindbrain of mouse embryos, using small numbers of cells in combination with genetic and lineage markers. This technique has uncovered a surprising degree of plasticity with respect to the expression of Hox genes, which can be used as markers of different hindbrain segments and cells, in both hindbrain tissue and cranial neural crest cells. Our analysis shows that the patterning of cranial neural crest cells relies on a balance between permissive and instructive signals, and underscores the importance of cell-community effects. These results reveal a new role for the cranial mesoderm in patterning facial tissues. Furthermore, our findings argue against a permanently fixed prepatterning of the cranial neural crest that is maintained by passive transfer of positional information from the hindbrain to the periphery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assay for autonomy of Hox gene expression and mixing in transpositions of murine rhombomeric cells.
Figure 2: Cell-community effects and plasticity in transposition of rhombomeric cells.
Figure 3: Plasticity of Hox gene expression in cranial neural crest cells.
Figure 4: Cranial mesoderm is required to maintain Hox gene expression in the neural crest cells of ba2.
Figure 5: Cranial mesoderm is insufficient to induce Hox gene expression.
Figure 6: Retinoic acid is not required for second-arch patterns of Hox gene expression.

Similar content being viewed by others

References

  1. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis . Science 274, 1109–1115 (1996).

    Article  CAS  Google Scholar 

  2. Lumsden, A. & Keynes, R. Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424– 428 (1989).

    Article  CAS  Google Scholar 

  3. Lumsden, A., Sprawson, N. & Graham, A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291 (1991).

    CAS  PubMed  Google Scholar 

  4. Köntges, G. & Lumsden, A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242 (1996).

    PubMed  Google Scholar 

  5. Serbedzija, G., Fraser, S. & Bronner-Fraser, M. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297 –307 (1992).

    CAS  PubMed  Google Scholar 

  6. Sechrist, J., Serbedzija, G. N., Scherson, T., Fraser, S. E. & Bronner-Fraser, M. Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development 118, 691–703 (1993).

    CAS  PubMed  Google Scholar 

  7. Le Douarin, N. The Neural Crest (Cambridge Univ. Press, Cambridge, 1983).

    Google Scholar 

  8. Noden, D. M. Origins and patterning of craniofacial mesenchymal tissues. J. Craniofac. Genet. Dev. Biol. Suppl. 2, 15– 31 (1986).

    Google Scholar 

  9. Noden, D. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144– 165 (1983).

    Article  CAS  Google Scholar 

  10. Couly, G., Grapin-Botton, A., Coltey, P., Ruhin, B. & Le Douarin, N. M. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 128, 3445–3459 ( 1998).

    Google Scholar 

  11. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  Google Scholar 

  12. Hunt, P. et al. A distinct Hox code for the branchial region of the head . Nature 353, 861–864 (1991).

    Article  CAS  Google Scholar 

  13. Saldivar, J., Krull, C., Krumlauf, R., Ariza-McNaughton, L. & Bronner-Fraser, M. Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa3 in the avian embryo . Development 122, 895– 904 (1996).

    CAS  PubMed  Google Scholar 

  14. Hunt, P., Clarke, J. D. W., Buxton, P., Ferretti, P. & Thorogood, P. Stability and plasticity of neural crest patterning and branchial arch Hox code after extensive cephalic crest rotation. Dev. Biol. 198, 82– 104 (1998).

    Article  CAS  Google Scholar 

  15. Guthrie, S. et al. Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature 356, 157–159 (1992).

    Article  CAS  Google Scholar 

  16. Kuratani, S. C. & Eichele, G. Rhombomere transposition repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein. Development 117 , 105–117 (1993).

    CAS  PubMed  Google Scholar 

  17. Prince, V. & Lumsden, A. Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120, 911– 923 (1994).

    CAS  PubMed  Google Scholar 

  18. Grapin-Botton, A., Bonnin, M.-A., Ariza-McNaughton, L., Krumlauf, R. & LeDouarin, N. M. Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 121, 2707–2721 (1995).

    CAS  PubMed  Google Scholar 

  19. Itasaki, N., Sharpe, J., Morrison, A. & Krumlauf, R. Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron 16, 487–500 (1996).

    Article  CAS  Google Scholar 

  20. Grapin-Botton, A., Bonnin, M.-A. & Le Douarin, N. Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group. Development 124, 849–859 (1997).

    CAS  PubMed  Google Scholar 

  21. Gould, A., Itasaki, N. & Krumlauf, R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21, 39–51 (1998).

    Article  CAS  Google Scholar 

  22. Noden, D. Patterning of avian craniofacial muscles. Dev. Biol. 116, 347–356 (1986).

    Article  CAS  Google Scholar 

  23. Trainor, P. A., Tan, S. S. & Tam, P. P. L. Cranial paraxial mesoderm — regionalization of cell fate and impact on craniofacial development in mouse embryos. Development 120, 2925–2932 (1994).

    Google Scholar 

  24. Pöpperl, H. et al. Segmental expression of Hoxb1 is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx. Cell 81, 1031–1042 ( 1995).

    Article  Google Scholar 

  25. Maconochie, M. et al. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev. 11, 1885–1896 (1997).

    Article  CAS  Google Scholar 

  26. Nonchev, S. et al. Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122, 543 –554 (1996).

    CAS  PubMed  Google Scholar 

  27. Maconochie, M. et al. Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 126, 1483–1494 (1999).

    CAS  PubMed  Google Scholar 

  28. Marshall, H. et al. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360, 737–741 (1992).

    Article  CAS  Google Scholar 

  29. Lee, Y. M. et al. Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells. Development 121, 825–837 (1995).

    CAS  PubMed  Google Scholar 

  30. Chazaud, C., Chambon, P. & Dollé, P. Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development 126, 2589–2596 (1999).

    CAS  PubMed  Google Scholar 

  31. Xu, Q., Alldus, G., Holder, N. & Wilkinson, D. G. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain . Development 121, 4005– 4016 (1995).

    CAS  PubMed  Google Scholar 

  32. Xu, Q., Mellitzer, G., Robinson, V. & Wilkinson, D. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–271 (1999).

    Article  CAS  Google Scholar 

  33. Kulesa, P. Neural crest cell dynamics revealed by time-lapse video microscopy of whole chick explant cultures. Dev. Biol. 204, 327–344 (1998).

    Article  CAS  Google Scholar 

  34. Frohman, M. A., Boyle, M. & Martin, G. R. Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110, 589–607 (1990).

    CAS  PubMed  Google Scholar 

  35. Golding, J., Trainor, P., Krumlauf, R. & Gassman, M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nature Cell Biol. 2, 103 –109 (2000).

    Article  CAS  Google Scholar 

  36. Gould, A., Morrison, A., Sproat, G., White, R. & Krumlauf, R. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev. 11, 900–913 ( 1997).

    Article  CAS  Google Scholar 

  37. Manzanares, M. et al. The role of kreisler in segmentation during hindbrain development. Dev. Biol. 211, 220– 237 (1999).

    Article  CAS  Google Scholar 

  38. Sturm, K. & Tam, P. P. L. Isolation and culture of whole postimplantation embryos and germ layer derivatives. Methods Enzymol. 225, 164–190 ( 1993).

    Article  CAS  Google Scholar 

  39. Whiting, J. et al. Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev. 5, 2048–2059 (1991).

    Article  CAS  Google Scholar 

  40. Trainor, P. A. & Tam, P. P. L. Cranial paraxial mesoderm and neural crest of the mouse embryo — codistribution in the craniofacial mesenchyme but distinct segregation in the branchial arches. Development 121, 2569–2582 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Mealyer for help with animal husbandry; C. Akins for help with FACS analysis; J. Golding and M. Gassmann for sharing unpublished results; and D. Wilkinson, M. Bronner-Fraser and members of the Krumlauf laboratory for valuable discussions. P.T. was supported by EMBO and HFSP postdoctoral fellowships. This work was funded by Core MRC Programme support and an EEC Biotechnology Network grant (#BIO4 CT-960378) to R.K.

Correspondence and requests for materials should be addressed to R.K.

Supplementary information is available on Nature Cell Biology’s World-Wide Web site (http://cellbio.nature.com) or as paper copy from the London editorial office of Nature Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robb Krumlauf.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trainor, P., Krumlauf, R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nat Cell Biol 2, 96–102 (2000). https://doi.org/10.1038/35000051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing