Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos

Abstract

During early embryogenesis of Drosophila melanogaster, mutations in the DNA-replication checkpoint lead to chromosome-segregation failures. Here we show that these segregation failures are associated with the assembly of an anastral microtubule spindle, a mitosis-specific loss of centrosome function, and dissociation of several components of the γ-tubulin ring complex from a core centrosomal structure. The DNA-replication inhibitor aphidicolin and DNA-damaging agents trigger identical mitotic defects in wild-type embryos, indicating that centrosome inactivation is a checkpoint-independent and mitosis-specific response to damaged or incompletely replicated DNA. We propose that centrosome inactivation is part of a damage-control system that blocks chromosome segregation when replication/damage checkpoint control fails.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo analysis of microtubule reorganization during development of grp mutant embryos.
Figure 2: Anastral spindles and chromosome-congression defects occur in checkpoint mutants.
Figure 3: γ-Tubulin mislocalization in grp mutants correlates with chromosome alignment and spindle-assembly defects.
Figure 4: Mitosis-specific loss of γ-tubulin from a core centrosomal structure.
Figure 5: Defects in the centrosomal localization of Dgrip84 and Dgrip91, components of the γ-tubulin ring complex, in grp mutant embryos.
Figure 6: Centromere alignment by anastral spindles.
Figure 7: Aphidicolin triggers mitosis-specific loss of γ-tubulin localization in wild-type embryos.
Figure 8: Laser illumination triggers mitosis-specific defects in centrosome function and blocks chromosome segregation.
Figure 9: DNA-damage control in early Drosophila embryos.

Similar content being viewed by others

References

  1. Foe, V., Odell, G. M. & Edgar, B. A. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez Arias, A.) 149–300 ( Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1993).

    Google Scholar 

  2. Edgar, B. A. & Schubiger, G. Parameters controlling transcriptional activation during early Drosophila development. Cell 44, 871–877 (1986).

    Article  CAS  Google Scholar 

  3. Foe, V. E. & Alberts, B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61, 31– 70 (1983).

    CAS  PubMed  Google Scholar 

  4. Edgar, B. A., Kiehle, C. P. & Schubiger, G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44, 365 –372 (1986).

    Article  CAS  Google Scholar 

  5. Wieschaus, E. & Sweeton, D. Requirements for X-linked zygotic gene activity during cellularization of early Drosophila embryos. Development 104, 483–493 (1988).

    CAS  PubMed  Google Scholar 

  6. Merrill, P. T., Sweeton, D. & Wieschaus, E. Requirements for autosomal gene activity during precellular stages of Drosophila melanogaster. Development 104, 495–509 (1988).

    CAS  PubMed  Google Scholar 

  7. Sibon, O. C., Laurencon, A., Hawley, R. & Theurkauf, W. E. The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr. Biol. 9, 302–312 (1999).

    Article  CAS  Google Scholar 

  8. Sibon, O. C., Stevenson, V. A. & Theurkauf, W. E. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388, 93– 97 (1997).

    Article  CAS  Google Scholar 

  9. Hari, K. L. et al. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82, 815–821 (1995).

    Article  CAS  Google Scholar 

  10. Fogarty, P. et al. The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol. 7, 418–426 ( 1997).

    Article  CAS  Google Scholar 

  11. Fogarty, P., Kalpin, R. F. & Sullivan, W. The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13. Development 120, 2131–2142 (1994).

    CAS  PubMed  Google Scholar 

  12. Theurkauf, W. E. & Heck, M. M. Identification and characterization of mitotic mutations in Drosophila. Methods Cell Biol. 61, 317–346 ( 1999).

    Article  CAS  Google Scholar 

  13. Kellogg, D. R., Mitchison, T. J. & Alberts, B. M. Behaviour of microtubules and actin filaments in living Drosophila embryos. Development 103, 675–686 (1988).

    CAS  PubMed  Google Scholar 

  14. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378, 578–583 ( 1995).

    Article  CAS  Google Scholar 

  15. Kellogg, D. R., Field, C. M. & Alberts, B. M. Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo . J. Cell Biol. 109, 2977– 2991 (1989).

    Article  CAS  Google Scholar 

  16. Oegema, K., Whitfield, W. G. & Alberts, B. The cell cycle-dependent localization of the CP190 centrosomal protein is determined by the coordinate action of two separable domains. J. Cell Biol. 131, 1261–1273 (1995).

    Article  CAS  Google Scholar 

  17. Whitfield, W. G., Chaplin, M. A., Oegema, K., Parry, H. & Glover, D. M. The 190 kDa centrosome-associated protein of Drosophila melanogaster contains four zinc finger motifs and binds to specific sites on polytene chromosomes. J. Cell Sci. 108, 3377–3387 (1995).

    CAS  PubMed  Google Scholar 

  18. Li, K. & Kaufman, T. C. The homeotic target gene centrosomin encodes an essential centrosomal component. Cell 85 , 585–596 (1996).

    Article  CAS  Google Scholar 

  19. Oegema, K. et al. Characterization of two related Drosophila gamma-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 ( 1999).

    Article  CAS  Google Scholar 

  20. Moore, D. P., Page, A. W., Tang, T. T., Kerrebrock, A. W. & Orr-Weaver, T. L. The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J. Cell Biol. 140, 1003–1012 (1998).

    Article  CAS  Google Scholar 

  21. Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581–591 ( 1986).

    Article  CAS  Google Scholar 

  22. Raff, J. W. & Glover, D. M. Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol. 107, 2009 –2019 (1988).

    Article  CAS  Google Scholar 

  23. Erickson, L. C., Bradley, M. O. & Kohn, K. W. Mechanisms for the production of DNA damage in cultured human and hamster cells irradiated with light from fluorescent lamps, sunlamps, and the sun. Biochim. Biophys. Acta 610, 105–115 (1980).

    Article  CAS  Google Scholar 

  24. Cadet, J. et al. Effects of UV and visible radiation on DNA-final base damage . Biol. Chem. 378, 1275– 1286 (1997).

    CAS  PubMed  Google Scholar 

  25. Zheng, Y., Jung, M. K. & Oakley, B. R. Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65, 817–823 (1991).

    Article  CAS  Google Scholar 

  26. Theurkauf, W. E. & Hawley, R. S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–1180 ( 1992).

    Article  CAS  Google Scholar 

  27. Matthies, H. J., McDonald, H. B., Goldstein, L. S. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol. 134, 455–464 (1996).

    Article  CAS  Google Scholar 

  28. Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615–628 (1997).

    Article  CAS  Google Scholar 

  29. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  Google Scholar 

  30. Megraw, T. L., Li, K., Kao, L. R. & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829– 2839 (1999).

    CAS  PubMed  Google Scholar 

  31. Vaizel-Ohayon, D. & Schejter, E. D. Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr. Biol. 9, 889– 898 (1999).

    Article  CAS  Google Scholar 

  32. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744– 1747 (1996).

    Article  CAS  Google Scholar 

  33. Doxsey, S. The centrosome — a tiny organelle with big potential. Nature Genet. 20, 104–106 ( 1998).

    Article  CAS  Google Scholar 

  34. Edgar, B. A., Sprenger, F., Duronio, R. J., Leopold, P. & O’Farrell, P. H. Distinct molecular mechanisms regulate cell cycle timing at successive stages of Drosophila embryogenesis . Genes Dev. 8, 440–452 (1994).

    Article  CAS  Google Scholar 

  35. Theurkauf, W. E. Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis. Methods Cell Biol. 44, 489 –505 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the NIH (RO1GM50898) to W.E.T.

Correspondence and requests for materials should be addressed to W.E.T.

Supplementary information is available on Nature Cell Biology’s World-Wide Web site (http://cellbio.nature.com) or as paper copy from the London editorial office of Nature Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Theurkauf.

Supplementary information

Figure 1 supplementary movie

Microtubule reorganization in a grp checkpoint mutant embryo during the disrupted 13th mitosis. Centrosomes nucleate dynamic microtubule during interphase 13, but loose nucleating activity as the embryo initiates mitosis. Asters reform as the embryo exits mitosis. See also http://pmm1.umassmed.edu/theurkauf. (MOV 4286 kb)

Figure 2 supplementary movie

Microtubule (right) and chromatin (left) in a grp mutant embryo. During the first two mitoses in this sequence (mitosis 11 and 12), astral spindles form and chromosomes align and segregate normally. During the last mitosis in the sequence (mitosis 13), by contrast, tubulin incorporation into centrosomes decreases dramatically, anastral spindles form, and chromosome congression and segregation fail. Centrosomes regain nucleating activity on exit from this failed mitosis. See also http://pmm1.umassmed.edu/theurkauf. (MOV 5017 kb)

Figure 8a-d supplementary movie

Microtubules (left) and chromatin (right) in a wild type embryo during divisions 11 and 12, imaged under standard conditions. Centrosomes are maintained through the cell cycle, astral spindles assemble, and chromosomes align and segregate during mitosis. See also http://pmm1.umassmed.edu/theurkauf. (MOV 2801 kb)

Figure 8e-h supplementary movie

Microtubules (right) and chromatin (left) in a wild type embryo intentionally exposed to damaging levels of laser illumination. During interphase, centrosomes nucleate dynamic microtubule arrays. At the onset of mitosis, however, nucleating activity drops dramatically, anastral spindles assemble, and chromosomes fail to congress to the metaphase plate. On exit from mitosis, chromosome segregation fails and centrosomes regain nucleating activity. These defects are essentially indistinguishable from those observed in late syncytial blastoderm stage checkpoint mutants (compare to Figure 1 supplement). See also http://pmm1.umassmed.edu/theurkauf. (MOV 3999 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibon, O., Kelkar, A., Lemstra, W. et al. DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol 2, 90–95 (2000). https://doi.org/10.1038/35000041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing