Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation

Abstract

Interactions between receptor tyrosine kinases of the Eph family and their ligands, ephrins, are implicated in establishment of organ boundaries and repulsive guidance of cell migration during development, but the mechanisms by which this is achieved are unclear. Here we show that activation of endogenous EphA2 kinase induces an inactive conformation of integrins and inhibits cell spreading, migration and integrin-mediated adhesion. Moreover, EphA2 is constitutively associated with focal-adhesion kinase (FAK) in resting cells. Within one minute after stimulation of EphA2 with its ligand, ephrin-A1, the protein tyrosine phosphatase SHP2 is recruited to EphA2; this is followed by dephosphorylation of FAK and paxillin, and dissociation of the FAK–EphA2 complex. We conclude that Eph kinases mediate some of their functions by negatively regulating integrins and FAK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapid induction of cell rounding and tyrosine phosphorylation of EphA2 by stimulation with ephrin-A1–Fc.
Figure 2: EphA2 activation inhibits integrin-mediated cell adhesion.
Figure 3: EphA2 activation by both soluble and immobilized ephrin-A1 inhibits cell spreading and migration.
Figure 4: FAK is rapidly dephosphorylated and inactivated after EphA2 activation.
Figure 5: Inhibition of PTPase activity diminishes FAK dephosphorylation and prevents cell rounding induced by EphA2 activation.
Figure 6: EphA2 physically associates with FAK in vivo.
Figure 7: Increased association of SHP2 with EphA2 upon ligand stimulation.

Similar content being viewed by others

References

  1. Gale, N. W. & Yancopoulos, G. D. Ephrins and their receptors: a repulsive topic? Cell Tissue Res. 290, 227–241 (1997).

    Article  CAS  Google Scholar 

  2. Eph Nomenclature Committe. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90, 403–404 ( 1997).

    Article  Google Scholar 

  3. Gale, N. W. et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19 (1996 ).

    Article  CAS  Google Scholar 

  4. Flenniken, A. M., Gale, N. W., Yancopoulos, G. D. & Wilkinson, D. G. Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev. Biol. 179, 382–401 (1996).

    Article  CAS  Google Scholar 

  5. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  Google Scholar 

  6. Mellitzer, G., Xu, Q. & Wilkinson, D. G. Eph receptors and ephrins restrict cell intermingling and communication. Nature 400, 77– 81 (1999).

    Article  CAS  Google Scholar 

  7. Xu, Q., Mellitzer, G., Robinson, V. & Wilkinson, D. G. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267– 271 (1999).

    Article  CAS  Google Scholar 

  8. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases . Cell 82, 359–370 (1995).

    Article  CAS  Google Scholar 

  9. Wang, H. U. & Anderson, D. J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383– 396 (1997).

    Article  CAS  Google Scholar 

  10. Krull, C. E. et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7, 571–580 (1997).

    Article  CAS  Google Scholar 

  11. Smith, A., Robinson, V., Patel, K. & Wilkinson, D. G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570 (1997).

    Article  CAS  Google Scholar 

  12. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  13. Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48, 549–554 (1987).

    Article  CAS  Google Scholar 

  14. Schwartz, M. A., Schaller, M. D. & Ginsberg, M. H. Integrins: emerging paradigms of signal transduction . Annu. Rev. Cell Dev. Biol. 11, 549– 599 (1995).

    Article  CAS  Google Scholar 

  15. Richardson, A. & Parsons, J. T. Signal transduction through integrins: a central role for focal adhesion kinase? Bioessays 17, 229–236 ( 1995).

    Article  CAS  Google Scholar 

  16. Guan, J. L. & Shalloway, D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation . Nature 358, 690–692 (1992).

    Article  CAS  Google Scholar 

  17. Calalb, M. B., Polte, T. R. & Hanks, S. K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. Cell. Biol. 15, 954 –963 (1995).

    Article  CAS  Google Scholar 

  18. Schlaepfer, D. D. & Hunter, T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8, 151–157 ( 1998).

    Article  CAS  Google Scholar 

  19. Lindberg, R. A. & Hunter, T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol. Cell Biol. 10, 6316–6324 (1990).

    Article  CAS  Google Scholar 

  20. Holland, S. J. et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16, 3877–3888 ( 1997).

    Article  CAS  Google Scholar 

  21. O’Toole, T. E. et al. Integrin cytoplasmic domains mediate inside-out signal transduction . J. Cell Biol. 124, 1047– 1059 (1994).

    Article  Google Scholar 

  22. Faull, R. J., Kovach, N. L., Harlan, J. M. & Ginsberg, M. H. Affinity modulation of integrin alpha 5 beta 1: regulation of the functional response by soluble fibronectin. J. Cell Biol. 121, 155–162 (1993).

    Article  CAS  Google Scholar 

  23. van de Wiel-van Kemenade, E. et al. Adhesion of T and B lymphocytes to extracellular matrix and endothelial cells can be regulated through the beta subunit of VLA. J. Cell Biol. 117, 461– 470 (1992).

    Article  CAS  Google Scholar 

  24. Gailit, J. & Ruoslahti, E. Regulation of the fibronectin receptor affinity by divalent cations. J. Biol. Chem. 263, 12927–12932 (1988).

    CAS  PubMed  Google Scholar 

  25. Davis, S. et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819 (1994).

    Article  CAS  Google Scholar 

  26. Pandey, A., Lindberg, R. A. & Dixit, V. M. Cell signalling. Receptor orphans find a family. Curr. Biol. 5, 986–989 ( 1995).

    Article  CAS  Google Scholar 

  27. Richardson, A. & Parsons, T. A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK. Nature 380, 538–540 ( 1996).

    Article  CAS  Google Scholar 

  28. Romer, L. H., McLean, N., Turner, C. E. & Burridge, K. Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. Mol. Biol. Cell 5, 349–361 (1994).

    Article  CAS  Google Scholar 

  29. Cary, L. A., Chang, J. F. & Guan, J. L. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J. Cell Sci. 109, 1787–1794 (1996).

    CAS  PubMed  Google Scholar 

  30. Gilmore, A. P. & Romer, L. H. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell 7, 1209 –1224 (1996).

    Article  CAS  Google Scholar 

  31. Schaller, M. D. & Parsons, J. T. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol. Cell Biol. 15, 2635–2645 (1995).

  32. Richardson, A., Malik, R. K., Hildebrand, J. D. & Parsons, J. T. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol. Cell. Biol. 17, 6906–6914 ( 1997).

    Article  CAS  Google Scholar 

  33. Retta, S. F. et al. Focal adhesion and stress fiber formation is regulated by tyrosine phosphatase activity. Exp. Cell Res. 229, 307–317 (1996).

    Article  CAS  Google Scholar 

  34. Defilippi, P. et al. p125FAK tyrosine phosphorylation and focal adhesion assembly: studies with phosphotyrosine phosphatase inhibitors. Exp. Cell Res. 221, 141–152 ( 1995).

    Article  CAS  Google Scholar 

  35. Tonks, N. K. & Neel, B. G. From form to function: signaling by protein tyrosine phosphatases. Cell 87, 365–368 (1996).

    Article  CAS  Google Scholar 

  36. Neel, B. G. & Tonks, N. K. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9, 193–204 (1997).

    Article  CAS  Google Scholar 

  37. Cirri, P. et al. Low molecular weight protein-tyrosine phosphatase tyrosine phosphorylation by c-Src during platelet-derived growth factor-induced mitogenesis correlates with its subcellular targeting. J. Biol. Chem. 273, 32522–32527 (1998).

    Article  CAS  Google Scholar 

  38. Yamauchi, K., Ribon, V., Saltiel, A. R. & Pessin, J. E. Identification of the major SHPTP2-binding protein that is tyrosine-phosphorylated in response to insulin. J. Biol. Chem. 270, 17716–17722 (1995).

    Article  CAS  Google Scholar 

  39. Schaller, M. D., Otey, C. A., Hildebrand, J. D. & Parsons, J. T. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J. Cell Biol. 130, 1181–1187 (1995).

    Article  CAS  Google Scholar 

  40. Stein, E., Cerretti, D. P. & Daniel, T. O. Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells . J. Biol. Chem. 271, 23588– 23593 (1996).

    Article  CAS  Google Scholar 

  41. Zisch, A. H., Kalo, M. S., Chong, L. D. & Pasquale, E. B. Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene 16, 2657–2670 (1998).

    Article  CAS  Google Scholar 

  42. Pandey, A., Lazar, D. F., Saltiel, A. R. & Dixit, V. M. Activation of the Eck receptor protein tyrosine kinase stimulates phosphatidylinositol 3-kinase activity. J. Biol. Chem. 269, 30154 –30157 (1994).

    CAS  PubMed  Google Scholar 

  43. Hock, B. et al. PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc. Natl Acad. Sci. USA 95, 9779–9784 (1998).

    Article  CAS  Google Scholar 

  44. Torres, R. et al. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453–1463 (1998).

    Article  CAS  Google Scholar 

  45. Meima, L., Moran, P., Matthews, W. & Caras, I. W. Lerk2 (Ephrin-B1) is a collapsing factor for a subset of cortical growth cones and acts by a mechanism different from AL-1 (Ephrin-A5). Mol. Cell Neurosci. 9, 314–328 ( 1997).

    Article  CAS  Google Scholar 

  46. Meima, L. et al. AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rearrangement of the actin cytoskeleton . Eur. J. Neurosci. 9, 177– 188 (1997).

    Article  CAS  Google Scholar 

  47. Huynh-Do, U. et al. Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. EMBO J. 18, 2165–2173 ( 1999).

    Article  CAS  Google Scholar 

  48. Stein, E. et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678 ( 1998).

    Article  CAS  Google Scholar 

  49. Lemmon, V., Farr, K. L. & Lagenaur, C. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2, 1597– 1603 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.R. Sedor, S. Brady-Kalnay, M. Konieczkowski and J.R. Schelling for critical reading of the manuscript; R.L. Van Etten for antibody to LMW-PTP; and J.-L. Guan and J. Pessin for FAK and SHP2 expression plasmids. B.W. is supported by grants from the American Heart Association (grant 9806275), American Cancer Society (Cuyahoga Division), Department of the Army (grant PC970263) and NIH (grant P50 DK54178).

Correspondence and requests for materials should be addressed to B.W.

Supplementary information is available on Nature Cell Biology’s World-Wide Web site (http://cellbio.nature.com) or as paper copy from the London editorial office of Nature Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingcheng Wang.

Supplementary information

41556_2000_BFncb0200_62_MOESM1_ESM.pdf

EphA2 and EphB1 regulation of integrin-mediated cell adhesion: nonspecific stimulation versus specific inhibition is determined by ligand presentation (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, H., Burnett, E., Kinch, M. et al. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2, 62–69 (2000). https://doi.org/10.1038/35000008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing