Lipid rafts: at a crossroad between cell biology and physics

Article metrics

Abstract

Membrane lateral heterogeneity is accepted as a requirement for the function of biological membranes and the notion of lipid rafts gives specificity to this broad concept. However, the lipid raft field is now at a technical impasse because the physical tools to study biological membranes as a liquid that is ordered in space and time are still being developed. This has lead to a disconnection between the concept of lipid rafts as derived from biochemical and biophysical assays and their existence in the cell. Here, we compare the concept of lipid rafts as it has emerged from the study of synthetic membranes with the reality of lateral heterogeneity in biological membranes. Further application of existing tools and the development of new tools are needed to understand the dynamic heterogeneity of biological membranes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Domain-length scales and the biomembrane as a protein–lipid composite material.
Figure 2: Examples of lipid and protein domains in cell membranes.

References

  1. 1

    Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

  2. 2

    Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988).

  3. 3

    Brown, D. GPI-anchored proteins and detergent-resistant membrane domains. Braz. J. Med. Biol. Res. 27, 309–315 (1994).

  4. 4

    Pralle, A., Florin, E. -L., Simons, K. & Horber, J. K. H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007 (2000).

  5. 5

    Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

  6. 6

    Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L. & Jacobson, K. Partitioning of Thy-1, GM1, and cross-linked phospholipids into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl Acad. Sci. USA 98, 10642–10647 (2001).

  7. 7

    Mayor, S. & Rao, M. Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5, 231–240 (2004).

  8. 8

    Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

  9. 9

    Maxfield, F. R. Plasma membrane microdomains. Curr. Opin. Cell Biol. 14, 483–487 (2002).

  10. 10

    Mouritsen, O. G. Life as a matter of fat. The emerging science of lipidomics. (Springer-Verlag, Heidelberg, 2005).

  11. 11

    Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598 (2006).

  12. 12

    Edidin, M. The state of lipid rafts: From model membranes to cells. Annual Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

  13. 13

    Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecules tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

  14. 14

    Lommerse, P. H. M., Spaink, H. P. & Schmidt, T. In vivo plasma membrane organization: results of biophysica approaches. Biochim. Biophys. Acta 2004, 119–131 (2004).

  15. 15

    McMullen, T., Lewis, R. & McElhaney, R. Cholesterol-phospholipid interactions, the liquid -ordered phase and lipid rafts in model and biological membranes. Curr. Opin. Coll. Inter. Sci. 8, 459–468 (2004).

  16. 16

    Mukherjee, S. & Maxfield, F. R. Membrane domains. Annu. Rev. Cell Dev. Biol. 20, 839–866 (2004).

  17. 17

    Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

  18. 18

    Parton, R. G. & Hancock, J. F. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol. 14, 141–147 (2004).

  19. 19

    Simons, K. & Vaz, W. Model systems, lipid rafts, and cell membranes. Ann. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

  20. 20

    Vereb, G. et al. Dynamic, yet structured: The cell membrane the decades after the Singer-Nicolson model. Proc. Natl Acad. Sci. USA 100, 8053–8058 (2003).

  21. 21

    de Almeida, R. F., Loura, L., Fedorov, A. & Prieto, M. Lipid rafts have different sizes depending on membrane composition: A time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 346, 1109–1120 (2005).

  22. 22

    Hsueh, Y. W., Gilbert, K., Trandum, C., Zuckermann, M. & Thewalt, J. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study. Biophys. J. 88, 1799–1808 (2005).

  23. 23

    Veatch, S. L., Polozov, I. V., Gawrisch, K. & Keller, S. L. Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys. J. 86, 2910–2922 (2004).

  24. 24

    Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

  25. 25

    Engleman, D. M. Membranes are more mosaic than fluid. Nature 438, 578–580 (2005).

  26. 26

    Ryan, T. A., Myers, J., Holowka, D. A., Baird, B. A. & Webb, W. W. Molecular crowding on the cell surface. Science 239, 61–64 (1988).

  27. 27

    Quinn, P., Griffiths, G. & Warren, G. Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies. J. Cell Biol. 98, 2142–2147 (1984).

  28. 28

    Liang, Y. et al. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem. 278, 21655–21662 (2003).

  29. 29

    Liebman, P. A. & Entine, G. Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 185, 457–459 (1974).

  30. 30

    Rothberg, K. G., Ying, Y. S., Kamen, B. A. & Anderson, R. G. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol. 111, 2931–2938 (1990).

  31. 31

    McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

  32. 32

    Sheetz, M. P. Cell control by membrane-cytoskeleton adhesion. Nature Rev. Mol. Cell Biol. 2, 392–396 (2001).

  33. 33

    Janmey, P. A. & Lindberg, U. Cytoskeletal regulation: rich in lipids. Nature Rev. Mol. Cell Biol. 5, 658–666 (2004).

  34. 34

    Maksymiw, R., Sui, S. -F., Gaub, H. & Sackmann, E. Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae. Biochemistry 26, 2983–2990 (1987).

  35. 35

    Grzybek, M. et al. Spectrin-phospholipid interactions. Existence of multiple kinds of binding sites? Chem. Phys. Lipids 141, 133–141 (2006).

  36. 36

    Kwik, J. et al. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl Acad. Sci. USA 100, 13964–13969 (2003).

  37. 37

    McConnell, H. & Radhakrishnan, A. Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta 1610, 159–173 (2003).

  38. 38

    McLaughlin, S. How clusters of basic/hydrophobic residues on proteins interact with lipids in membranes. Biophys. J. SP23 (2004).

  39. 39

    Lee, A. G. Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003).

  40. 40

    Marsh, D. & Pali, T. Lipid conformation in crystalline bilayers and in crystals of transmembrane proteins. Chem. Phys. Lipids 141, 48–65 (2006).

  41. 41

    Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

  42. 42

    Kenworthy, A. K. & Edidin, M. Distribution of a glycosylphosphatidylinositol anchored protein at the apical surface of MDCK cells examined at a resolution of <100A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).

  43. 43

    Meyer, B. H. et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci USA 103, 2138–2143 (2006).

  44. 44

    Hess, S. T. et al. Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. J. Cell Biol. 169, 965–976 (2005).

  45. 45

    Douglas, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

  46. 46

    Larson, D. R., Gosse, J. A., Holowka, D. A., Baird, B. A. & Webb, W. W. Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J. Cell Biol. 171, 527–536 (2005).

  47. 47

    Parton, R. G. Caveolae--from ultrastructure to molecular mechanisms. Nature Rev. Mol. Cell Biol. 4, 162–167 (2003).

  48. 48

    Schade, A. E. & Levine, A. D. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: A mechanism for regulating the initiation of TCR signal transduction. J. Immunol. 168, 2233–2239 (2002).

  49. 49

    Wilson, B. et al. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell 15, 2580–2592 (2004).

  50. 50

    Wilson, B. S., Pfeiffer, J. R. & Oliver, J. M. Observing FceRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149, 1131–1142 (2000).

  51. 51

    Bruegger, B. et al. The membrane domains occupied by glcyosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition. J. Biol. Chem. 279, 7530–7536 (2004).

  52. 52

    Lichtenberg, D., Goni, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

  53. 53

    Kenworthy, A. K. et al. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746 (2004).

  54. 54

    Vrljic, M., Nishimura, S. Y., Brasselet, S., Moerner, W. E. & McConnell, H. M. Translational diffusion of individual class II MHC membrane proteins in cells. Biophys. J. 83, 2681–2692 (2002).

  55. 55

    Niv, H., Gutman, O., Kloog, Y. & Henis, Y. I. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol. 157, 865–872 (2002).

  56. 56

    Plowman, S. J., Muncke, C., Parton, R. G. & Hancock, J. F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl Acad. Sci. USA 102, 15500–15505 (2005).

  57. 57

    Murakoshi, H. et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl Acad. Sci. USA 101, 7317–7322 (2004).

  58. 58

    Malinska, K., Malinsky, J., Opekarova, M. & Tanner, W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14, 4427–4436 (2003).

  59. 59

    Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).

  60. 60

    Gaus, K. et al. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 15554–15559 (2003).

  61. 61

    Hemler, M. E. Tetraspanin functions and associated microdomains. Nature Rev. Mol. Cell Biol. 6, 801–811 (2005).

  62. 62

    Roper, K., Corbeil, D. & Huttner, W. B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biol. 2, 582–592 (2000).

  63. 63

    Nydegger, S., Khurana, S., Krementsov, D. N., Foti, M. & Thali, M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J. Cell Biol. 173, 795–807 (2006).

  64. 64

    Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

  65. 65

    Swamy, M. J. et al. Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy. Biophys J. 90, 4452–4465 (2006).

  66. 66

    Meder, D., Moreno, M. J., Verkade, P., Vaz, W. L. & Simons, K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl Acad. Sci. USA 103, 329–334 (2006).

  67. 67

    Lagerholm, B. C., Weinreb, G. E., Jacobson, K. & Thompson, N. L. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56, 309–336 (2005).

  68. 68

    Marguet, D., Lenne, P. F., Rigneault, H. & He, H. T. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J. 25, 3446–3457 (2006).

  69. 69

    Moertelmaier, M., Brameshuber, M., Linimeier, M., Schuetz, G. & Stockinger, H. Thinning out clusters while conserving stoichiometry of labeling. Appl. Phys. Lett. 87, 263903 (2005).

  70. 70

    Egner, A. & Hell, S. W. Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15, 207–215 (2005).

  71. 71

    Marxer, C. G., Kraft, M. L., Weber, P. K., Hutcheon, I. D. & Boxer, S. G. Supported membrane composition analysis by secondary ion mass spectrometry with high lateral resolution. Biophys J. 88, 2965–2975 (2005).

  72. 72

    Winograd, N. The magic of cluster SIMS. Anal. Chem. 77, 142A–149A (2005).

  73. 73

    Koopman, M. et al. Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells. FEBS Lett. 573, 6–10 (2004).

  74. 74

    Krishnan, R. V., Varma, R. & Mayor, S. Fluorescence methods to probe nanometre-scale organizaton of molecules in living cell membranes. J. Fluor. 11, 211–226 (2001).

  75. 75

    Lesniewska, E., Milhiet, P. E., Gicondi, M. C. & Le Grimellec, C. Atomic force microscope imaging of cells and membranes. Methods Cell Biol. 68, 51–65 (2002).

  76. 76

    Nagle, J. Could diffuse scattering of x-rays and/or neutrons provide structural information about rafts? Biophys. J. SP28 (2004).

  77. 77

    Pencer, J. et al. Detection of sub-micron raft-like domains in membranes by small-angle neutron scattering. Eur. Phys. J. 18, 447–458 (2005).

  78. 78

    Morowitz, H. Energy Flow in Biology (Ox Bow Press, Woodbridge, CT; 1968).

  79. 79

    Pfeffer, S. Membrane domains in the secretory and endocytic pathways. Cell 112, 507–517 (2003).

  80. 80

    Gheber, L. A. & Edidin, M. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys. J. 77, 3163–3175 (1999).

  81. 81

    Sabra, M. C. & Mouritsen, O. G. Steady-state compartmentalization of lipid membranes by active proteins. Biophys. J. 74, 745–752 (1998).

  82. 82

    Nicolis, G. & Prigogine, I. Exploring Complexity (W. H. Freeman, New York, 1989).

  83. 83

    Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

  84. 84

    Smart, E. J., Ying, Y., Donzell, W. C. & Anderson, R. G. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271, 29427–29435 (1996).

  85. 85

    Pol, A. et al. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol. Biol. Cell 15, 99–110 (2004).

  86. 86

    Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol. 1, 98–105 (1999).

  87. 87

    Chang, W. J., Rothberg, K. G., Kamen, B. A. & Anderson, R. G. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J. Cell Biol. 118, 63–69 (1992).

  88. 88

    Silvius, J. R. Partitioning of membrane molecules between raft and non-raft domains: Insights from model-membrane studies. Biochim. Biophys. Acta 1746, 193–202 (2005).

  89. 89

    Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

  90. 90

    Chen, Y., Thelin, W., Yang, B., Milgram, S. & Jacobson, K. Transient anchorage of cross-linked glycosyl-phosphatidylinositol–anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides. J. Cell Biol. 175, 169–178 (2006).

  91. 91

    Hammond, A. T. et al. Crosslinking a lipid raft component triggers liquid orderedliquid disordered phase separation in model plasma membranes. Proc. Natl Acad. Sci. USA 102, 6320–6325 (2005).

  92. 92

    De Angelis, A. A. et al. NMR experiments on aligned samples of membrane proteins. Methods Enzymol. 394, 350–382 (2005).

  93. 93

    Nicolau, D. V. Jr., Burrage, K., Parton, R. G. & Hancock, J. F. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell Biol. 26, 313–323 (2006).

  94. 94

    Heijnen, H. F. G. et al. Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J. Thromb. Haemos. 1, 1161–1173 (2003).

  95. 95

    Cambi, A. et al. Microdomains of the C-typle lectin DC-SIGN are portals for virus entry into dendritic cells. J. Cell Biol. 164, 145–155 (2004).

  96. 96

    Prior, I., Muncke, C., Parton, R. & Hancock, J. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

  97. 97

    Szollosi, J., Horejsi, V., Bene, L., Angelisova, P. & Damjanovich, S. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J. Immunol. 157, 2939–2946 (1996).

  98. 98

    Gomez-Mouton, C. et al. Dynamic redistribution of raft domains as an organzing platform for signaling during cell chemotaxis. J. Cell Biol. 164, 759–768 (2004).

  99. 99

    Hao, M., Mukherjee, S. & Maxfield, F. R. Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc. Natl Acad. Sci. USA 98, 13072–13077 (2001).

  100. 100

    Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipidmodified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

  101. 101

    Lommerse, P. H. et al. Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys. J. 86, 609–616 (2004).

  102. 102

    Herbert, B., Constantino, S. & Wiseman, P. W. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 88, 3601–3614 (2005).

  103. 103

    Sanchez, S. A. & Gratton, E. Lipid--protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Acc. Chem. Res. 38, 469–477 (2005).

  104. 104

    Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P.-F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J 89, 4029–4042 (2005).

  105. 105

    Wiseman, P. W. et al. Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. J. Cell Sci. 117, 5521–5534 (2004).

  106. 106

    Acasandreia, M. A., Dale, R. E., van de Venb, M. & Ameloot, M. . Twodimensional Förster resonance energy transfer (2-D FRET) and the membrane raft hypothesis. Chem. Phys. Lett. 419, 469–473 (2006).

  107. 107

    Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by singlequantum dot tracking. Science 302, 442–445 (2003).

  108. 108

    Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. & Jacobson, K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284 (2002).

  109. 109

    Cherry, R. J. et al. Measurements of associations of cell-surface receptors by single-particle fluorescence imaging. Biochem. Soc. Trans. 31, 1028–1031 (2003).

  110. 110

    Vrljic, M., Nishimura, S. Y., Moerner, W. E. & McConnell, H. M. Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys. J. 88, 334–347 (2005).

  111. 111

    Lukic, B. et al. Direct observation of nondiffusive motion of a Brownian particle. Phys. Rev. Lett. 95, 160601 (2005).

Download references

Acknowledgements

K.J. thanks A G. Lee, G. Schutz and H. Stockinger for stimulating comments. We also thank A. Diehl and B. Yang for artwork and assistance in preparing the manuscript. This work was supported by the National Institutes of Health (NIH) grant GM 41402 (K.J.), the Kenan Distinguished Professorship (K.J.), NIH grant HL 20948 (R.A.), NIH grant GM 52016 (R.A.), the Perot Family Foundation (R.A.) and the Cecil H. Green Distinguished Chair in Cellular and Molecular Biology (R.A.). MEMPHYS-Center for Biomembrane Physics is supported by the Danish National Research Foundation (O.G.M.).

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading