Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The spindle: a dynamic assembly of microtubules and motors

Abstract

In all eukaryotes, a microtubule-based structure known as the spindle is responsible for accurate chromosome segregation during cell division. Spindle assembly and function require localized regulation of microtubule dynamics and the activity of a variety of microtubule-based motor proteins. Recent work has begun to uncover the molecular mechanisms that underpin this process. Here we describe the structural and dynamic properties of the spindle, and introduce the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spindle structure and dynamics.
Figure 2: Mechanisms that regulate microtubule dynamics during mitosis.
Figure 3: Mechanisms for the establishment and maintenance of bipolarity.
Figure 4: Self-organization of microtubules and motors as a model for spindle-pole formation.
Figure 5: A model for chromosome movement in Xenopus-extract spindles.

References

  1. Andersen, S. S. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol. 10, 261 –267 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Compton, D. A. Spindle assembly in animal cells. Annu. Rev. Biochem. 69, 95–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Heald, R. Motor function in the mitotic spindle. Cell 102, 399–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Hyman, A. A. & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401–410 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maney, T., Ginkel, L. M., Hunter, A. W. & Wordeman, L. The kinetochore of higher eucaryotes: a molecular view. Int. Rev. Cytol. 194, 67–131 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  7. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Microtubule motors in mitosis. Nature 407, 41–47 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  9. Walczak, C. E. Microtubule dynamics and tubulin interacting proteins. Curr. Opin. Cell Biol. 12, 52–56 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  10. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein, L. S. & Philp, A. V. The road less traveled: emerging principles of kinesin motor utilization. Annu. Rev. Cell Dev. Biol. 15, 141–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hirokawa, N., Noda, Y. & Okada, Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, A. J. & Endow, S. A. A kinesin family tree . J. Cell Sci. 113, 3681– 3682 (2000).

    CAS  PubMed  Google Scholar 

  14. Mastronarde, D. N., McDonald, K. L., Ding, R. & McIntosh, J. R. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123, 1475–1489 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Winey, M. & O'Toole, E. T. The spindle cycle in budding yeast. Nature Cell Biol. 3, E23 –E27 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kubai, D. F. The evolution of the mitotic spindle. Int. Rev. Cytol. 43, 167–227 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Saxton,W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99, 2175–2186 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Salmon, E. D., Leslie, R. J., Saxton, W. M., Karow, M. L. & McIntosh, J. R. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching . J. Cell Biol. 99, 2165– 2174 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Hush, J. M., Wadsworth, P., Callaham, D. A. & Hepler, P. K. Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J. Cell Sci. 107 , 775–784 (1994).

    PubMed  Google Scholar 

  20. Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721– 734 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Verde, F., Dogterom, M., Stelzer, E., Karsenti, E. & Leibler, S. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J. Cell Biol. 118, 1097– 1108 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Cassimeris, L. Accessory protein regulation of microtubule dynamics throughout the cell cycle . Curr. Opin. Cell Biol. 11, 134– 141 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Belmont, L. D. & Mitchison, T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623– 631 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly . Cell 84, 37–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Gigant, B. et al. The 4 Å X-ray structure of a tubulin:stathmin-like domain complex. Cell 102, 809– 816 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Jourdain, L., Curmi, P., Sobel, A., Pantaloni, D. & Carlier, M-F. Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 36, 10817–10821 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Segerman, B., Larsson, N., Holmfeldt, P. & Gullberg, M. Mutational analysis of Op18/stathmin-tubulin interacting surfaces. Binding co-operativity controls tubulin GTP-hydrolysis in the ternary complex. J. Biol. Chem. 275, 35759–35766 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Howell, B., Larsson, N., Gullberg, M. & Cassimeris, L. Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol. Biol. Cell 10, 105–118 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larsson, N. et al. Op18/stathmin mediates multiple region-specific tubulin and microtubule-regulating activities. J. Cell Biol. 146 , 1289–1302 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McNally, F. J. Microtubule dynamics: controlling split ends. Curr. Biol. 9, R274–R276 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, P. J. & Huffaker, T. C. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nabeshima, K. et al. Dynamics of centromeres during metaphase–anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 9, 3211– 3225 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci. 111, 1371–1383 (1998).

    CAS  PubMed  Google Scholar 

  35. Matthews, L. R., Carter, P., Thierry-Mieg, D. & Kemphues, K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141, 1159–1168 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Graf, R., Daunderer, C. & Schliwa, M. Dictyostelium DdCP224 is a microtubule-associated protein and a permanent centrosomal resident involved in centrosome duplication . J. Cell Sci. 113, 1747– 1758 (2000).

    CAS  PubMed  Google Scholar 

  37. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203– 2215 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Vasquez, R. J., Gard, D. L. & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover . J. Cell Biol. 127, 985– 993 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  40. Vasquez, R. J., Gard, D. L. & Cassimeris, L. Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell. Motil. Cytoskeleton 43, 310–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637– 652 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Sawin, K. E. & Mitchison, T. J. Poleward microtubule flux mitotic spindles assembled in vitro. J. Cell Biol. 112, 941–954 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  44. Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maddox, P. S., Bloom, K. S. & Salmon, E. D. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nature Cell Biol. 2, 36–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Mallavarapu, A., Sawin, K. & Mitchison, T. A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe . Curr. Biol. 9, 1423– 1426 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Srayko, M., Buster, D. W., Bazirgan, O. A., McNally, F. J. & Mains, P. E. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev. 14, 1072 –1084 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. McNally, F. J. & Thomas, S. Katanin is responsible for the M-phase microtubule-severing activity in Xenopus eggs. Mol. Biol. Cell 9, 1847–1861 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615 –628 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Desai, A., Maddox, P. S., Mitchison, T. J. & Salmon, E. D. Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles. J. Cell Biol. 141, 703–713 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winey, M. Cell cycle: driving the centrosome cycle. Curr. Biol. 9, R449–R452 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ma, S., Trivinos-Lagos, L., Graf, R. & Chisholm, R. L. Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J. Cell Biol. 147, 1261–1274 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135– 150 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241– 253 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146, 597–608 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sadler, P. L. & Shakes, D. C. Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior–posterior polarization of the 1-cell embryo. Development 127, 355–366 (2000).

    CAS  PubMed  Google Scholar 

  59. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  60. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903– 913 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. De Brabander, M., Geuens, G., De Mey, J. & Joniau, M. Nucleated assembly of mitotic microtubules in living PTK2 cells after release from nocodazole treatment. Cell. Motil. 1, 469–483 (1981).

    Article  CAS  PubMed  Google Scholar 

  62. Karsenti, E., Newport, J. & Kirschner, M. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol. 99, 47s–54s (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalab, P., Pu, R. T. & Dasso, M. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9, 481–484 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  64. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  65. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356– 1358 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178 –181 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. King, S. M. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Saunders, W. S. & Hoyt, M. A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70, 451–458 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  69. Sharp, D. J. et al. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles . J. Cell Biol. 144, 125– 138 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Saunders, W. S., Koshland, D., Eshel, D., Gibbons, I. R. & Hoyt, M. A. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol. 128, 617– 624 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Vernos, I. et al. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81, 117–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447– 458 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Verde, F., Berrez, J. M., Antony, C. & Karsenti, E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112, 1177–1187 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Dionne, M. A., Howard, L. & Compton, D. A. NuMA is a component of an insoluble matrix at mitotic spindle poles. Cell. Motil. Cytoskeleton 42, 189–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Harborth, J., Wang, J., Gueth-Hallonet, C., Weber, K. & Osborn, M. Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. EMBO J. 18 , 1689–1700 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rogers, G. C. et al. A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division. J. Cell Biol. 150, 499–512 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boleti, H., Karsenti, E. & Vernos, I. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84, 49–59 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  84. de Saint Phalle, B. & Sullivan, W. Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J. Cell Biol. 141, 1383–1391 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Megraw, T. L., Li, K., Kao, L. R. & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829–2839 (1999).

    CAS  PubMed  Google Scholar 

  86. Vaizel-Ohayon, D. & Schejter, E. D. Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr. Biol. 9, 889–898 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257– 2259 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Yin, H., Pruyne, D., Huffaker, T. C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260– 2262 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Clarke, D. J. & Gimenez-Abian, J. F. Checkpoints controlling mitosis. Bioessays 22, 351– 363 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Khodjakov, A. & Rieder, C. L. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J. Cell Biol. 135, 315– 327 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110 , 81–95 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581–591 (1986).

    Article  CAS  PubMed  Google Scholar 

  94. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere- associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536–539 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  97. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis . Nature 345, 263–265 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. King, J. M., Hays, T. S. & Nicklas, R. B. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J. Cell Biol. 151, 739–748 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617– 633 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biol. 2, 922–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Savoian, M. S., Goldberg, M. L. & Rieder, C. L. The rate of poleward chromosome motion is attenuated in Drosophila ZW10 and ROD mutants. Nature Cell Biol. 2, 948–952 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139, 1373–1382 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357– 366 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Yucel, J. K. et al. CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J. Cell Biol. 150, 1–11 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102, 817–826 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  106. Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F. & Cleveland, D. W. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint . Nature Cell Biol. 2, 484– 491 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol. 128, 107–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787– 801 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Theurkauf, W. E. & Hawley, R. S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–1180 (1992).

    Article  CAS  PubMed  Google Scholar 

  110. Funabiki, H. & Murray, A. W. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425– 435 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400 , 37–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Uhlmann, F., Wernic, D., Poupart, M-A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  114. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J-M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Mitchison, T. J. & Salmon, E. D. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J. Cell Biol. 119, 569– 582 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Nicklas, R. B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem. 17, 431–449 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Oegema for critical comments on the manuscript. A.D. was supported by an EMBO Long Term Fellowship and by a fellowship from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wittmann, T., Hyman, A. & Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3, E28–E34 (2001). https://doi.org/10.1038/35050669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing