Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae

Abstract

Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to α-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FSM of an astral microtubule during the G1/S phase of the cell cycle.
Figure 2: FSM of an astral microtubule during anaphase.
Figure 3: Partial fluorescence recovery after laser photobleaching of the metaphase spindle.
Figure 4: Time-lapse observation of an anaphase spindle after laser photobleaching.
Figure 5: FSM of a late-anaphase spindle.
Figure 6: FSM of spindle disassembly in telophase.

Similar content being viewed by others

References

  1. Hoyt, M. A. & Geiser, J. R. Genetic analysis of the mitotic spindle. Annu. Rev. Genet. 30, 7– 33 (1996).

    Article  CAS  Google Scholar 

  2. Saunders, W. S. Action at the ends of microtubules. Curr. Opin. Cell Biol. 11, 129–133 (1999).

    Article  CAS  Google Scholar 

  3. Carminati, J. L. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629– 641 (1997).

    Article  CAS  Google Scholar 

  4. Shaw, S. L., Yeh, E., Maddox, P., Salmon, E. D. & Bloom, K. Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J. Cell Biol. 139, 985– 994 (1997).

    Article  CAS  Google Scholar 

  5. Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).

    Article  CAS  Google Scholar 

  6. Cottingham, F. R. & Hoyt, M. A. Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtuble motor proteins. J. Cell Biol. 138 , 1041–1053 (1997).

    Article  CAS  Google Scholar 

  7. Theesfeld, C. L., Irazoqui, J. E., Bloom, K. & Lew, D. J. The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 146, 1019–1032 (1999).

    Article  CAS  Google Scholar 

  8. Straight, A. F., Marshall, W. F. & Murray, A. W. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574– 578 (1997).

    Article  CAS  Google Scholar 

  9. Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143 , 687–694 (1998).

    Article  CAS  Google Scholar 

  10. Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 ( 1999).

    Article  CAS  Google Scholar 

  11. Huyett, A., Kahana, J., Silver, P., Zeng, X. & Saunders, W. S. The Kar3p and Kip2p motors function antagonistically at the spindle poles to influence cytoplasmic microtubule numbers. J. Cell Sci. 111, 295–301 (1998).

    CAS  PubMed  Google Scholar 

  12. Endow, S. A. et al. Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 13, 2708–2713 (1994).

    Article  CAS  Google Scholar 

  13. Meluh, P. B. & Rose, M. D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60, 1029– 1041 (1990).

    Article  CAS  Google Scholar 

  14. DeZwaan, T. M., Ellingson, E., Pellman, D. & Roof, D. M. Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J. Cell Biol. 138, 1023–1040 (1997).

    Article  CAS  Google Scholar 

  15. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  Google Scholar 

  16. Waterman-Storer, C. M. & Salmon, E. D. How microtubules get fluorescent speckles. Biophys. J. 75, 2059–2069 (1998).

    Article  CAS  Google Scholar 

  17. Salmon, E. D. et al. A high-resolution multimode digital microscope system. Methods Cell Biol. 56, 185–215 (1998).

    Article  CAS  Google Scholar 

  18. Yeh, E., Skibbens, R. V., Cheng, J. W., Salmon, E. D. & Bloom, K. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 130, 687–700 ( 1995).

    Article  CAS  Google Scholar 

  19. Jacobs, C. W., Adams, A. E., Szaniszlo, P. J. & Pringle, J. R. Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 107, 1409–1426 (1988).

    Article  CAS  Google Scholar 

  20. Maddox, P. et al. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 144, 977–987 ( 1999).

    Article  CAS  Google Scholar 

  21. O’Toole, E. T., Winey, M. & MacIntosh, J. R. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae . Mol. Biol. Cell 10, 2017– 2031 (1999).

    Article  Google Scholar 

  22. Wein, H., Foss, M., Brady, B. & Cande, W. Z. DSK1, a novel kinesin-related protein from the diatom Cylindrotheca fusiformis that is involved in anaphase spindle elongation. J. Cell Biol. 133, 595–604 (1996).

    Article  CAS  Google Scholar 

  23. Saxton, W. M. & McIntosh, J. R. Interzone microtubule behavior in late anaphase and telophase spindles. J. Cell Biol. 105, 875–886 (1987).

    Article  CAS  Google Scholar 

  24. Mallavarapu, A., Sawin, K. & Mitchison, T. A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe. Curr. Biol. 9, 1423–1426 (1999).

    Article  CAS  Google Scholar 

  25. Sawin, K. E. & Mitchison, T. J. Microtubule flux in mitosis is independent of chromosomes, centrosomes, and antiparallel microtubules . Mol. Biol. Cell 5, 217– 226 (1994).

    Article  CAS  Google Scholar 

  26. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637– 652 (1989).

    Article  CAS  Google Scholar 

  27. Desai, A., Maddox, P. S., Mitchison, T. J. & Salmon, E. D. Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles. J. Cell Biol. 141, 703–713 (1998).

    Article  CAS  Google Scholar 

  28. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).

    Article  CAS  Google Scholar 

  29. Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139, 417–434 (1997).

    Article  CAS  Google Scholar 

  30. Keating, T.J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D. & Borisy, G. G. Microtubule release from the centrosome . Proc. Natl Acad. Sci USA 94, 5078– 5083 (1997).

    Article  CAS  Google Scholar 

  31. Salmon, E. D. & Wadsworth, P. in Applications of Fluorescence in the Biomedical Sciences (eds Taylor, D. L., Waggoner, A. S., Lanni, F., Murphy, R. F. & Birge, R. R.) 377–403 (Alan R. Liss, New York, 1986).

    Google Scholar 

  32. Shaw, S. L., Yeh, E., Bloom, K. & Salmon, E. D. Imaging green fluorescent protein fusion proteins in Saccharomyces cerevisiae. Curr. Biol. 7, 701–704 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.S.M. thanks members of the Salmon and Bloom laboratories for support and A. Straight for the gift of GFP–Tub1. We also thank Nikon, Hamamatsu Photonics and Universal Imaging for the loan of equipment used for development of our imaging systems. This work was supported by NIH grants GM32238 (to K.S.B.) and GM24364 (to E.D.S.).

Correspondence and requests for materials should be addressed to P.S.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Maddox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddox, P., Bloom, K. & Salmon, E. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nat Cell Biol 2, 36–41 (2000). https://doi.org/10.1038/71357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing