Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

5′-end SAGE for the analysis of transcriptional start sites

Abstract

Identification of the mRNA start site is essential in establishing the full-length cDNA sequence of a gene and analyzing its promoter region, which regulates gene expression. Here we describe the development of a 5′-end serial analysis of gene expression (5′ SAGE) that can be used to globally identify transcriptional start sites and the frequency of individual mRNAs. Of the 25,684 5′ SAGE tags in the HEK293 human cell library, 19,893 matched to the human genome. Among 15,448 tags in one locus of the genome, 85.8%–96.1% of the 5′ SAGE tags were assigned within −500 to +200 nt of mRNA start sites using the RefSeq, UniGene and DBTSS databases. This technique should facilitate 5′-end transcriptome analysis in a variety of cells and tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: 5′ SAGE tags hit around the defined transcription start sites.

Similar content being viewed by others

References

  1. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J.M. Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 (1999).

    Article  CAS  Google Scholar 

  2. Saha, S. et al. Using the transcriptome to annotate the genome. Nat. Biotechnol. 20, 508–512 (2002).

    Article  CAS  Google Scholar 

  3. Madden, S.L., Galella, E.A., Zhu, J., Bertelsen, A.H. & Beaudry, G.A. SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15, 1079–1085 (1997).

    Article  CAS  Google Scholar 

  4. Velculescu, V.E. et al. Analysis of human transcriptomes. Nat. Genet. 23, 387–388 (1999).

    Article  CAS  Google Scholar 

  5. Hashimoto, S. et al. Gene expression profile in human leukocytes. Blood 101, 3509–3513 (2003).

    Article  CAS  Google Scholar 

  6. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  7. Maruyama, K. & Sugano, S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171–174 (1994).

    Article  CAS  Google Scholar 

  8. Suzuki, Y. et al. DBTSS: DataBase of human Transcriptional Start Sites and full-length cDNAs. Nucleic Acids Res. 30, 328–331 (2002).

    Article  CAS  Google Scholar 

  9. Suzuki, Y. et al. Diverse transcriptional initiation revealed by fine, large-scale mapping of mRNA start sites. EMBO Rep. 2, 388–393 (2001).

    Article  CAS  Google Scholar 

  10. Pauws, E., van Kampen, A.H., van de Graaf, S.A., de Vijlder, J.J. & Ris-Stalpers, C. Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis. Nucleic Acids Res. 29, 1690–1694 (2001).

    Article  CAS  Google Scholar 

  11. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. USA 100, 15776–15781 (2003).

    Article  CAS  Google Scholar 

  12. Modrek, B. & Lee, C. A genomic view of alternative splicing. Nat. Genet. 30, 13–19 (2002).

    Article  CAS  Google Scholar 

  13. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).

    Article  CAS  Google Scholar 

  14. Zavolan, M. et al. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res. 13, 1290–1300 (2003).

    Article  CAS  Google Scholar 

  15. Hashimoto, S.-I., Suzuki, T., Dong, H.-Y., Yamazaki, N. & Matsushima, K. Serial analysis of gene expression in human monocytes and macrophages. Blood 94, 837–844 (1999).

    Article  CAS  Google Scholar 

  16. Suzuki, Y., Yoshitomo-Nakagawa, K., Maruyama, K., Suyama, A. & Sugano, S. Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library. Gene 200, 149–156 (1997).

    Article  CAS  Google Scholar 

  17. Honkura, T., Ogasawara, J., Yamada, T. & Morishita, S. The Gene Resource Locator: gene locus maps for transcriptome analysis. Nucleic Acids Res. 30, 221–225 (2002).

    Article  CAS  Google Scholar 

  18. Wheeler, D.L. Database Resources of the National Center for Biotechnology. Nucleic Acids Res. 31, 28–33 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (C) “Medical Genome Science” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouji Matsushima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Comparison of the novel 5′ ends of representative known genes between 5′SAGE and the directly sequenced data of the 5′ end of captured full length cDNAs in HEK293. (PDF 12 kb)

Supplementary Fig. 2

Scatter plot of the frequency of 5′SAGE and 3′SAGE tags. (PDF 115 kb)

Supplementary Table 1

Identification of uncharacterized candidate genes and exons. (PDF 6 kb)

Supplementary Table 2

Profile of the 5′-end transcripts in HEK293 cells. (PDF 10 kb)

Supplementary Note, part 1 (XLS 2543 kb)

Supplementary Note, part 2 (XLS 2240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, Si., Suzuki, Y., Kasai, Y. et al. 5′-end SAGE for the analysis of transcriptional start sites. Nat Biotechnol 22, 1146–1149 (2004). https://doi.org/10.1038/nbt998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing