Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase

Abstract

Plant roots release a range of enzymes capable of degrading chemical compounds in their immediate vicinity1,2. We present a system of phytoremediation ex planta based on the overexpression of one such enzyme, a secretory laccase. Laccases catalyze the oxidation of a broad range of phenolic compounds3, including polychlorinated phenols such as 2,4,6-trichlorophenol (TCP), that are among the most hazardous and recalcitrant pollutants in the environment4. We isolated a secretory laccase cDNA of LAC1, which is specifically expressed in the roots of Gossypium arboreum (cotton). Transgenic Arabidopsis thaliana plants overexpressing LAC1 exhibited enhanced resistance to several phenolic allelochemicals and TCP. The secretory laccase activity in these plants was responsible for the conversion of sinapic acid into a mono-lactone type dimer and for the transformation of TCP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression pattern of LAC1 in cotton and laccase activities in A. thaliana seedlings expressing LAC1.
Figure 2: Resistance of cultured LAC1 seedlings to phenolics and TCP.
Figure 3: Resistance of LAC1 plants to phenolic acid and TCP.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Inderjit & Duke, S.O. Ecophysiological aspects of allelopathy. Planta 217, 529–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Boyajian, G.E. & Carreira, L.H. Phytoremediation: a clean transition from laboratory to marketplace? Nat. Biotechnol. 15, 127–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Mayer, A.M. & Staples, R.C. Laccase: new functions for an old enzyme. Phytochemistry 60, 551–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Gupta, S.S. et al. Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science 296, 326–328 (2002).

    Article  PubMed  Google Scholar 

  5. Nitta, K., Kataoka, K. & Sakurai, T. Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. J. Inorg. Biochem. 91, 125–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Sterjiades, R., Dean, J.F.D., Gamble, G., Himmelsbach, D.S. & Eriksson, K.-E.L. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell suspension cultures. Reactions with monolignols and lignin model compounds. Planta 190, 75–87 (1993).

    Article  CAS  Google Scholar 

  7. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  8. Wu, H., Haig, T., Pratley, J., Lemerle, D. & An, M. Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum). J. Agric. Food Chem. 50, 4567–4571 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Chu, W. & Wong, C.C. A disappearance model for the prediction of trichlorophenol ozonation. Chemosphere 51, 289–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Leontievsky, A.A. et al. Transformation of 2,4,6-trichlorophenol by free and immobilized fungal laccase. Appl. Microbiol. Biotechnol. 57, 85–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Ahn, M.Y., Dec, J., Kim, J.E. & Bollag, J.M. Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J. Environ. Qual. 31, 1509–1515 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Ullah, M.A., Bedford, C.T. & Evans, C.S. Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl. Microbiol. Biotechnol. 53, 230–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Niwa, T., Doi, U., Kato, Y. & Osawa, T. Inhibitory mechanism of sinapinic acid against peroxynitrite-mediated tyrosine nitration of protein in vitro. FEBS Lett. 459, 43–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Li, L. & Steffens, J.C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Ranocha, P. et al. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129, 145–155 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chapple, C.C., Vogt, T., Ellis, B.E. & Somerville, C.R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4, 1413–1424 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lim, E.K. et al. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem. 276, 4344–4349 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. & Vivanco, J.M. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377–1380 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Dur´n, N., Rosa, M.A., D'Annibale, A. & Gianfreda, L. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 31, 907–931 (2002).

    Article  Google Scholar 

  20. Dhankher, O.P. et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat. Biotechnol. 20, 1140–1145 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Doty, S.L. et al. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc. Natl. Acad. Sci. USA 97, 6287–6291 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hannink, N. et al. Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat. Biotechnol. 19, 1168–1172 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Song, W.Y. et al. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21, 914–919 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Luo, P., Wang, Y.H., Wang, G.D., Essenberg, M. & Chen, X.Y. Molecular cloning and functional identification of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 monooxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J. 28, 95–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Tan, X.P. et al. Expression pattern of (+)-δ-cadinene synthase genes and biosynthesis of sesquiterpene aldehydes in plants of Gossypium arboreum L. Planta 210, 644–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Jefferson, R.A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405 (1987).

    Article  CAS  Google Scholar 

  27. Min, K.L., Kim, Y.H., Kim, Y.W., Jung, H.S. & Hah, Y.C. Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Arch. Biochem. Biophys. 392, 279–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Howles, P.A. et al. Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol. 112, 1617–1624 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Chen, W.L. Hu and Y.J. Lai for their help in HPLC-MS and GC-MS analysis. This research was supported by National Natural Sciences Foundation of China (grants 30030020 and 39925005) and by the Chinese Academy of Sciences (grant KSCX2-SW-313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ya Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

GUS staining of the 4-day-old Arabidopsis seedlings expressing 35S::GUS or pLAC1::GUS. (PDF 140 kb)

Supplementary Fig. 2

Resistance of Arabidopsis plants of different transgenic LAC lines to TCP, 3 weeks after the second spraying. See also Figure 3. (PDF 182 kb)

Supplementary Fig. 3

HPLC-MS analysis of soluble phenolics of the 2-week-old WT and LAC 4-2 seedlings of Arabidopsis cultured in 1/2 MS medium (a) or in the medium containing 0.5 mM sinapic acid (b). (PDF 15 kb)

Supplementary Table 1

Root elongation of WT and LAC 4-2 seedlings grown in the agar plate in the presence of TCP (PDF 18 kb)

Supplementary Table 2

Root elongation of WT and LAC seedlings grown in the agar plate in the presence of 20 μM TCP (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, GD., Li, QJ., Luo, B. et al. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol 22, 893–897 (2004). https://doi.org/10.1038/nbt982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing