Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An engineered epigenetic transgene switch in mammalian cells

Abstract

In multicellular systems cell identity is imprinted by epigenetic regulation circuits, which determine the global transcriptome of adult cells in a cell phenotype–specific manner1,2,3. By combining two repressors, which control each other's expression, we have developed a mammalian epigenetic circuitry able to switch between two stable transgene expression states after transient administration of two alternate drugs. Engineered Chinese hamster ovary cells (CHO-K1) showed toggle switch–specific expression profiles of a human glycoprotein in culture, as well as after microencapsulation and implantation into mice. Switch dynamics and expression stability could be predicted with mathematical models. Epigenetic transgene control through toggle switches is an important tool for engineering artificial gene networks in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular configuration of the epigenetic transcription control circuit.
Figure 2: Validation of bistable toggle expression performance after expression in CHO-K1 cells.
Figure 3: Reversibility of epigenetic expression control in TOGGLECHO37.
Figure 4: Bistability of epigenetic expression control in mice.

Similar content being viewed by others

References

  1. Rank, G., Prestel, M. & Paro, R. Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol. Cell. Biol. 22, 8026–8034 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Casadesus, J. & D'Ari, R. Memory in bacteria and phage. Bioessays 24, 512–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Kohler, C. & Grossniklaus, U. Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr. Opin. Cell Biol. 14, 773–779 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Malleret, G. et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Aubel, D. et al. Design of a novel mammalian screening system for the detection of bioavailable, non-cytotoxic streptogramin antibiotics. J. Antibiot. 54, 44–55 (2001).

    Article  CAS  Google Scholar 

  6. Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X. & Bailey, J.E. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotechnol. 16, 468–472 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Rivera, V.M. et al. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc. Natl. Acad. Sci. USA 96, 8657–8662 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao, F. et al. Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum. Gene Ther. 9, 1939–1950 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Fussenegger, M. et al. Streptogramin-based gene regulation systems for mammalian cells. Nat. Biotechnol. 18, 1203–1208 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Weber, W. et al. Macrolide-based transgene control in mammalian cells and mice. Nat. Biotechnol. 20, 901–907 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Weber, W. et al. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res. 31, e71 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moosmann, P., Georgiev, O., Thiesen, H.J., Hagmann, M. & Schaffner, W. Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Kruppel-type zinc finger factor. Biol. Chem. 378, 669–677 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kapunisk-Uner, J.E., Sande, M.A. & Chambers, H.F.S. in Goodman and Gilman's The Pharmacological Basis of Therapeutics (ed. Limbierd, L.E.) 1123–1153 (McGraw-Hill, New York, 1996).

    Google Scholar 

  16. Wegener, H.C., Bager, F. & Aarestrup, F.M. Surveillance of antimicrobial resistance in humans, food stuffs and livestock in Denmark. Euro. Surveill. 2, 17–19 (1997).

    Article  PubMed  Google Scholar 

  17. Orlando, V. Polycomb, epigenomes, and control of cell identity. Cell 112, 599–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hasty, J., McMillen, D. & Collins, J.J. Engineered gene circuits. Nature 420, 224–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Atkinson, M.R., Savageau, M.A., Myers, J.T. & Ninfa, A.J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Moser, S. et al. An update of pTRIDENT multicistronic expression vectors: pTRIDENTs containing novel streptogramin-responsive promoters. Biotechnol. Prog. 16, 724–735 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Weber, W. et al. Versatile macrolide-responsive mammalian expression vectors for multiregulated multigene metabolic engineering. Biotechnol. Bioeng. 80, 691–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Schlatter, S., Rimann, M., Kelm, J. & Fussenegger, M. SAMY, a novel mammalian reporter gene derived from Bacillus stearothermophilus alpha-amylase. Gene 282, 19–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B.R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Cherry, J.L. & Adler, F.R. How to make a biological switch. J. Theor. Biol. 203, 117–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Ermentrout, B. Simulating, Analyzing, and Animating Dynamical Systems (Society for Industrial & Applied Mathemetics, Pittsburgh, PA, 2002).

    Book  Google Scholar 

  28. Corish, P. & Tyler-Smith, C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 12, 1035–1040 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Martine Gilet for skillful assistance on in vivo experiments, Eva Niederer for FACS-mediated single-cell sorting, Valeria Gonzalez-Nicolini for useful discussions and Cornelia Fux for technical advice. This work was supported by the Swiss National Science Foundation (grant no. 631-065946) as well as the Novartis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, B., Viretta, A., Baba, ME. et al. An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol 22, 867–870 (2004). https://doi.org/10.1038/nbt980

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing