Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Para-position derivatives of fungal anthelmintic cyclodepsipeptides engineered with Streptomyces venezuelae antibiotic biosynthetic genes

Abstract

PF1022A, a cyclooctadepsipeptide possessing strong anthelmintic properties and produced by the filamentous fungus Rosellinia sp. PF1022, consists of four alternating residues of N-methyl-L-leucine and four residues of D-lactate or D-phenyllactate. PF1022A derivatives obtained through modification of their benzene ring at the para-position with nitro or amino groups act as valuable starting materials for the synthesis of compounds with improved anthelmintic activities. Here we describe the production of such derivatives by fermentation through metabolic engineering of the PF1022A biosynthetic pathway in Rosellinia sp. PF1022. Three genes cloned from Streptomyces venezuelae, and required for the biosynthesis of p-aminophenylpyruvate from chorismate in the chloramphenicol biosynthetic pathway, were expressed in a chorismate mutase–deficient strain derived from Rosellinia sp. PF1022. Liquid chromatography–mass spectrometry and NMR analyses confirmed that this approach facilitated the production of PF1022A derivatives specifically modified at the para-position. This fermentation method is environmentally safe and can be used for the industrial scale production of PF1022A derivatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Biosynthetic pathway of PF1022A and strategy for fermentation of unnatural PF1022A derivatives.
Figure 3: Restriction maps and Southern blot analysis.
Figure 4: Schematic representation of the cluster genes and plasmids.
Figure 5: Identification of PF1022A derivatives in the culture broth of the TF-11 strain.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Umezawa, H., Iwasawa, H., Ikeda, D. & Kondo, S. A predominant role of amino groups in the antibacterial action of aminoglycosides: synthesis of hexa- and heptadeoxykanamycin derivatives. J. Antibiot. 36, 1087–1091 (1983).

    Article  CAS  Google Scholar 

  2. Pine, S.H., Hendrickson, J.B., Cram, D.J. & Hammond, G.S. Organic chemistry. edn. 4 (McGraw-Hill Book Company, New York, 1980).

    Google Scholar 

  3. Campelo, A.B. & Gil, J.A. The candicidin gene cluster from Streptomyces griseus IMRU 3570. Microbiology 148, 51–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Blanc, V. et al. Identification and analysis of genes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin I. Mol. Microbiol. 23, 191–202 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. He, J., Magarvey, N., Piraee, M. & Vining, L.C. The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene. Microbiology 147, 2817–2829 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Dosselaere, F. & Vanderleyden, J. A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit. Rev. Microbiol. 27, 75–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Sasaki, T. et al. A new anthelmintic cyclodepsipeptide, PF1022A. J. Antibiot. 45, 692–697 (1992).

    Article  CAS  Google Scholar 

  8. Miyadoh, S. et al. Taxonomic position of the fungus producing the anthelmintic PF1022 based on the 18S rRNA gene base sequence. Nippon Kingakukai Kaiho 41, 183–188 (2000).

    CAS  Google Scholar 

  9. Ohyama, M. et al. Process for producing cyclodepsipeptide compounds and novel cyclodepsipeptide. European patent application EP0930304A1 (1999).

  10. Sakanaka, O. et al. Novel cyclic depsipeptide PF1022 derivatives. European Patent Application EP0903347A1 (1999).

  11. Nishiyama, H., Ohgaki, M., Yamanishi, R. & Hara, T. Depsipeptide derivatives, production thereof and use thereof. US patent 5,514,773 (1996).

  12. Scherkenbeck, J. Jeschke, P & Harder, A. PF1022A and related cyclodepsipeptides – A novel class of anthelmintics. Curr. Top. Med. Chem. 2, 759–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Weckwerth, W. et al. Biosynthesis of PF1022A and related cyclooctadepsipeptides. J. Biol. Chem. 275, 17909–17915 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Midoh, N. et al. Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide. European patent application EP1215281A1 (2002).

  15. Miyamoto, K. et al. Novel (R)-2-hydroxy-3-phenylpropionate (D-phenyllactate) dehydrogenase and gene encoding the same. European patent application EP1291417A1 (2003).

  16. Jeschke, P. et al. Process for the preparation of substituted aryl lactic acid containing cyclodepsipeptides with 24 ring atoms. US patent 6,033,879 (2000).

  17. Eberhard, J., Raesecke, H.R., Schmid, J. & Amrhein, N. Cloning and expression in yeast of a higher plant chorismate mutase. Molecular cloning, sequencing of the cDNA and characterization of the Arabidopsis thaliana enzyme expressed in yeast. FEBS Lett. 334, 233–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Schmidheini, T., Sperisen, P., Paravicini, G., Hutter, R. & Braus, G. A single point mutation results in a constitutively activated and feedback-resistant chorismate mutase of Saccharomyces cerevisiae. J. Bacteriol. 171, 1245–1253 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moriya, T. et al. Systems for the mass production of proteins or peptides by microorganisms of the genus Humicola. US patent 6,403,362 (2002).

  20. Doull, J., Ahmed, Z., Stuttard, C. & Vining, L.C. Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J. Gen. Microbiol. 131, 97–104 (1985).

    CAS  PubMed  Google Scholar 

  21. Brown, M.P., Aidoo, K.A. & Vining, L.C. A role for pabAB, a p-aminobenzoate synthase gene of Streptomyces venezuelae ISP5230, in chloramphenicol biosynthesis. Microbiology 142, 1345–1355 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Yanai, K. et al. Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes. European patent application EP1223215A1 (2002).

  23. Watanabe, M. et al. A phosphonate-induced gene which promotes Penicillium-mediated bioconversion of cis-propenylphosphonic acid to fosfomycin. Appl. Environ. Microbiol. 65, 1036–1044 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cantwell, C., Beckmann, R., Whiteman, P., Queener, S.W. & Abraham, E.P. Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc. R. Soc. Lond. B 248, 283–289 (1992).

    Article  CAS  Google Scholar 

  25. Crawford, L. et al. Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology 13, 58–62 (1995).

    CAS  Google Scholar 

  26. Cropp, T.A., Wilson, D.J. & Reynolds, K.A. Identification of a cyclohexylcarbonyl CoA biosynthetic gene cluster and application in the production of doramectin. Nat. Biotechnol. 18, 980–983 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Andrews, P.R., Smith, G.D. & Young, I.G. Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate. Biochemistry 12, 3492–3498 (1973).

    Article  CAS  PubMed  Google Scholar 

  28. Kast, P., Asif-Ullah, M., Jiang, N. & Hilvert, D. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: The importance of electrostatic catalysis. Proc. Natl. Acad. Sci. USA 93, 5043–5048 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawai, S., Kobayashi, K., Oshima, T. & Egami, F. Studies on the oxidation of p-aminobenzoate to p-nitrobenzoate by Streptomyces thioluteus. Arch. Biochem. Biophys. 112, 537–543 (1965).

    Article  CAS  PubMed  Google Scholar 

  30. Daly, J. & Guroff, G. Production of m-methyltyrosine and p-hydroxymethylphenylalanine from p-methylphenylalanine by phenylalanine hydroxylase. Arch. Biochem. Biophys. 125, 136–141 (1968).

    Article  CAS  PubMed  Google Scholar 

  31. Challis, G.L., Ravel, J. & Townsend, C.A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Horiuchi, H., Yanai, K., Okazaki, T., Takagi, M. & Yano, K. Isolation and sequencing of a genomic clone encoding aspartic proteinase of Rhizopus niveus. J. Bacteriol. 170, 272–278 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Kitamoto, N. et al. Utilization of the TEF1-α gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl. Microbiol. Biotechnol. 50, 85–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Mousdale, D.M. The analytical chemistry of microbial cultures. in Applied Microbial Physiology. A Practical Approach, 165–192 (IRL Press at Oxford University Press, Oxford, New York and Tokyo, 1997).

    Google Scholar 

Download references

Acknowledgements

We thank M. Ohyama and O. Sakanaka for the synthesis of PF1022A derivatives and p-substituted phenyllactates, N. Sano for the LC-MS analysis, S. Miki for the HRMS analysis, S. Gomi for the NMR analysis, H. Nakazato for help in the isolation of the tef1 gene, T. Matsunobu and S. Amano for the purification of PF1022-220 and C.J. Thompson for helpful discussions and manuscript reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Yanai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanai, K., Sumida, N., Okakura, K. et al. Para-position derivatives of fungal anthelmintic cyclodepsipeptides engineered with Streptomyces venezuelae antibiotic biosynthetic genes. Nat Biotechnol 22, 848–855 (2004). https://doi.org/10.1038/nbt978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing