Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Apomixis technology development—virgin births in farmers' fields?

Abstract

Apomixis is the process of asexual reproduction through seed, in the absence of meiosis and fertilization, generating clonal progeny of maternal origin. Major benefits to agriculture could result from harnessing apomixis in crop plants. Although >400 apomictic plant species are known, apomixis is rare among crop plants, and the transfer of apomixis to crop varieties by conventional breeding has been largely unsuccessful. Because apomictic and sexual pathways are closely related, de novo engineering of apomixis might be achieved in sexually reproducing crops. Early consideration of issues relating to biosafety and intellectual property (IP) management can facilitate the acceptance and deployment of apomixis technology in agriculture.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of sexual and apomictic developmental pathways.

Bob Crimi

Figure 2: Seed abortion as a result of interploidy crosses.

References

  1. 1

    Jaenisch, R. & Wilmut, I. Developmental biology. Don't clone humans! Science 291, 2552 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Jefferson, R. Apomixis: a social revolution for agriculture? Biotechnol. Dev. Monitor 19, 14–16 (1994).

    Google Scholar 

  3. 3

    Grossniklaus, U. From sexuality to apomixis: molecular and genetic approaches, in The Flowering of Apomixis: from Mechanisms to Genetic Engineering. (eds. Savidan, Y., Carman, J. & Dresselhaus, T.) 168–211 (CIMMYT, IRD, European Commission DG VI, Mexico, D.F., 2001).

    Google Scholar 

  4. 4

    McMeniman, S. & Lubulwa, G. Project Development Assessment: An Economic Evaluation of the Potential Benefits of Integrating Apomixis into Hybrid Rice. Working papers, WP28, Australian Centre for International Agricultural Research (ACIAR, Canberra, 1997).

  5. 5

    Redenbaugh, K. Synseeds: Applications of Synthetic Seeds to Crop Improvement. (CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  6. 6

    Manganaris, G.A., Economou, A.S., Boubourakas, I.N. & Katis, N.A. Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine. Plant Cell Rep. 22, 195–200 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Koltunow, A. & Grossniklaus, U. Apomixis: A developmental perspective. Annu. Rev. Plant Biol. 54, 547–574 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Rose-Fricker, C.A., Fraser, M.L., Meyer, W.A. & Funk, C.R. Registration of 'Blackstone' Kentucky Bluegrass. Crop Sci. 42, 307–308 (2002).

    Article  Google Scholar 

  9. 9

    Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Spillane, C., Steimer, A. & Grossniklaus, U. Apomixis in agriculture: the quest for clonal seed. Sexual Plant Reproduction 14, 179–187 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Baroux, C., Spillane, C. & Grossniklaus, U. Genomic imprinting during seed development. Adv. Genet. 46, 165–214 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Alleman, M. & Doctor, J. Genomic imprinting in plants: observations and evolutionary implications. Plant Mol. Biol. 43, 147–161 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Quarin, C., Espinoza, F., Martinez, E., Pessino, S. & Bovo, O. A rise in ploidy level induces the expression of apomixis in Paspalum notatum. Sexual Plant Reproduction 13, 243–249 (2001).

    Article  Google Scholar 

  14. 14

    Mittelsten Scheid, O., Jakovleva, L., Afsar, K., Maluszynska, J. & Paszkowski, J. A change of ploidy can modify epigenetic silencing. Proc. Natl. Acad. Sci. USA 93, 7114–7119 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Daniell, H. Genetically modified food crops: current concerns and solutions for next generation crops. Biotechnol. Genetic Eng. Rev. 17, 327–352 (2000)

    CAS  Article  Google Scholar 

  16. 16

    Daniell, H. Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20, 581–586 (2002).

    CAS  Article  Google Scholar 

  17. 17

    van Dijk, P. & van Damme, J. Apomixis technology and the paradox of sex. Trends Plant Sci. 5, 81–84 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Hurst, L. & Peck, J. Recent advances in understanding the evolution and maintenance of sex. Trends Ecol. Evol. 11, 46–52 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Kondrashov, A.S. Classification of hypotheses on the advantage of amphimixis. J. Hered. 84, 372–387 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Berthaud, J. Apomixis and the management of genetic diversity. in The Flowering of Apomixis: from Mechanisms to Genetic Engineering. (eds. Savidan, Y., Carman, J. & Dresselhaus, T.) 8–23 (CIMMYT, IRD, European Commission, Mexico, DF, 2001).

    Google Scholar 

  21. 21

    Kondrashov, A.S. Deleterious mutations as an evolutionary factor. II. Facultative apomixis and selfing. Genetics 111, 635–653 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Dale, P., Clarke, B. & Fontes, E. Potential for the environmental impact of transgenic crops. Nat. Biotechnol. 20, 567–574 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Bierzychudek, P. Patterns in plant parthenogenesis. Experientia 41, 1255–1264 (1985).

    Article  Google Scholar 

  24. 24

    Chapman, H.M., Parh, D. & Oraguzie, N. Genetic structure and colonizing success of a clonal, weedy species, Pilosella officinarum (Asteraceae). Heredity 84, 401–409 (2000)

    Article  Google Scholar 

  25. 25

    Ellstrand, N.C. & Schierenbeck, K.A. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl. Acad. Sci. USA 97, 7043–7050 (2000).

    CAS  Article  Google Scholar 

  26. 26

    GRAIN Apomixis: the plant breeder's dream. Seedling 18 (2001).

  27. 27

    Holsinger, K.E. Reproductive systems and evolution in vascular plants. Proc. Natl. Acad. Sci. USA 97, 7037–7042 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Wood, D. Ecological principles in agricultural policy: but which principles? Food Policy 23, 371–381 (1998).

    Article  Google Scholar 

  29. 29

    Smale, M. The Green Revolution and wheat genetic diversity: Some unfounded assumptions. World Development 25, 1257–1269 (1997).

    Article  Google Scholar 

  30. 30

    Spillane, C. Agricultural biotechnology and developing countries: proprietary knowledge and diffusion of benefits, in Biotechnology, Agriculture and Diffusion of Benefits. (ed. T. Swanson) 67–136 (Edward Elgar Publishing Ltd., Cheltenham, UK and Northampton, MA, USA, 2002).

    Google Scholar 

  31. 31

    Spielman, M., Vinkenoog, R. & Scott, R.J. Genetic mechanisms of apomixis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 1095–1103 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Grossniklaus, U., Nogler, G.A. & van Dijk, P.J. How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell 13, 1491–1498 (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ueli Grossniklaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spillane, C., Curtis, M. & Grossniklaus, U. Apomixis technology development—virgin births in farmers' fields?. Nat Biotechnol 22, 687–691 (2004). https://doi.org/10.1038/nbt976

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing