Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution


DNA polymerases recognize their substrates with exceptionally high specificity1,2, restricting the use of unnatural nucleotides and the applications they enable. We describe a strategy to expand the substrate range of polymerases. By selecting for the extension of distorting 3′ mismatches, we obtained mutants of Taq DNA polymerase that not only promiscuously extended mismatches, but had acquired a generic ability to process a diverse range of noncanonical substrates while maintaining high catalytic turnover, processivity and fidelity. Unlike the wild-type enzyme, they bypassed blocking lesions such as an abasic site, a thymidine dimer or the base analog 5-nitroindol3 and performed PCR amplification with complete substitution of all four nucleotide triphosphates with phosphorothioates4 or the substitution of one with the equivalent fluorescent dye–labeled nucleotide triphosphate. Such 'unfussy' polymerases have immediate utility, as we demonstrate by the generation of microarray probes with up to 20-fold brighter fluorescence.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mismatch extension.
Figure 2: Lesion bypass and incorporation of unnatural substrates.
Figure 3: Microarray analysis of FITC-labeled probes.


  1. 1

    Kunkel, T.A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Kool, E.T. Active site tightness and substrate fit in DNA replication. Annu. Rev. Biochem. 71, 191–219 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Loakes, D. Survey and summary: The applications of universal DNA base analogues. Nucleic Acids Res. 29, 2437–2447 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Verma, S. & Eckstein, F. Modified oligonucleotides: synthesis and strategy for users. Annu. Rev. Biochem. 67, 99–134 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Li, Y., Mitaxov, V. & Waksman, G. Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc. Natl. Acad. Sci. USA 96, 9491–9496 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Astatke, M., Ng, K., Grindley, N.D. & Joyce, C.M. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc. Natl. Acad. Sci. USA 95, 3402–3407 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Xia, G. et al. Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc. Natl. Acad. Sci. USA 99, 6597–6602 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Jestin, J.L., Kristensen, P. & Winter, G. A method for the selection of catalytic activity using phage display and proximity coupling. Angew. Chem. Int. Ed. 38, 1124–1127 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Huang, M.-M., Arnheim, N. & Goodman, M.F. Extension of base mispairs by Taq polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 20, 4567–4573 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Ghadessy, F.J., Ong, J.L. & Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl. Acad. Sci. USA 98, 4552–4557 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Kwok, S. et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 18, 999–1005 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Goodman, M.F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71, 17–50 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Friedberg, E.C., Wagner, R. & Radman, M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296, 1627–1630 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Barnes, W.M. PCR amplification of up to 35-kb DNA with high-fidelity and high-yield from l bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Trincao, J. et al. Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. Mol. Cell 8, 417–426 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Kool, E.T. Synthetically modified DNAs as substrates for polymerases. Curr. Opin. Chem. Biol. 4, 602–608 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Morales, J.C. & Kool, E.T. Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases. Biochemistry 39, 12979–12988 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Tae, E.L., Wu, Y., Xia, G., Schultz, P.G. & Romesberg, F.E. Efforts toward expansion of the genetic alphabet: replication of DNA with three base pairs. J. Am. Chem. Soc. 123, 7439–7440 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Piccirilli, J.A., Krauch, T., Moroney, S.E. & Benner, S.A. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343, 33–37 (1990).

    CAS  Article  Google Scholar 

  21. 21

    Engelke, D.R., Krikos, A., Bruck, M.E. & Ginsburg, D. Purification of Thermus aquaticus DNA polymerase expressed in Escherichia coli. Anal. Biochem. 191, 396–400 (1990).

    CAS  Article  Google Scholar 

  22. 22

    Zhao, H., Giver, L., Shao, Z., Affholter, J.A. & Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Creighton, S., Bloom, L.B. & Goodman, M.F. Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. 262, 232–256 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Murata, T., Iwai, S. & Ohtsuka, E. Synthesis and characterization of a substrate for T4 endonuclease V containing a phosphorodithioate linkage at the thymine dimer site. Nucleic Acids Res. 18, 7279–7286 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Kokoska, R.J., McCulloch, S.D. & Kunkel, T.A. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. J. Biol. Chem. 278, 50537–50545 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Debbie, P. et al. Allele identification using immobilized mismatch binding protein: Detection and identification of antibiotic resistant bacteria and determination of sheep susceptibility to scrapie. Nucleic Acids Res. 25, 4825–4829 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Eom, S.H., Wang, J. & Steitz, T.A. Structure of Taq polymerase with DNA at the polymerase active site. Nature 382, 278–281 (1996).

    CAS  Article  Google Scholar 

Download references


F.B., A.V. and R.W. were supported by funds from the National Institutes of Health intramural research program.

Author information



Corresponding author

Correspondence to Philipp Holliger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghadessy, F., Ramsay, N., Boudsocq, F. et al. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nat Biotechnol 22, 755–759 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing