Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants

Abstract

We report the production of two very long chain polyunsaturated fatty acids, arachidonic acid (AA) and eicosapentaenoic acid (EPA), in substantial quantities in a higher plant. This was achieved using genes encoding enzymes participating in the ω3/6 Δ8-desaturation biosynthetic pathways for the formation of C20 polyunsaturated fatty acids. Arabidopsis thaliana was transformed sequentially with genes encoding a Δ9-specific elongating activity from Isochrysis galbana, a Δ8-desaturase from Euglena gracilis and a Δ5-desaturase from Mortierella alpina. Instrumental in the successful reconstitution of these C20 polyunsaturated fatty acid biosynthetic pathways was the I. galbana C18-Δ9-elongating activity, which may bypass rate-limiting steps present in the conventional Δ6-desaturase/elongase pathways. The accumulation of EPA and AA in transgenic plants is a breakthrough in the search for alternative sustainable sources of fish oils.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conventional and alternative desaturation pathways for AA and EPA.
Figure 2: GC profiles of A. thaliana leaf fatty acid methyl esters.
Figure 3: Positional analysis (by GC-MS) of the carbon double bonds of the C20 PUFAs (as their DMOX derivatives) in triple transgenic A. thaliana leaf tissues.
Figure 4: Positional analysis (by GC-MS) of the carbon double bonds of the two nonmethylene-interrupted C20 PUFAs (as their DMOX derivatives) in triple transgenic A. thaliana leaf tissues.

References

  1. 1

    Carlson, S.E., Werkman, S.H., Peeples, J.M., Cooke, R.J. & Tolley, E.A. Arachidonic acid status correlates with the first year growth in preterm infants. Proc. Natl. Acad. Sci. USA 90, 1073–1077 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Gill, I. & Valivety, R. Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol. 15, 401–409 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Crawford, M. Placental delivery of arachidonic acid and docosahexaenoic acids: implication for the lipid nutrition of preterm infants. Am. J. Clin. Nutr. 71, 275S–284S (2000).

    CAS  Article  Google Scholar 

  4. 4

    Lauritzen, L., Hansen, H.S., Jurgensen, M.H. & Michaelsen, K.F. The essentiality of long chain n-3 fatty acids in relation to development and function of brain and retina. Prog. Lipid Res. 40, 1–94 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Thies, F. et al. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomized controlled trial. Lancet 361, 477–485 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Kinsella, J.E., Lokesh, B., Broughton, S. & Whelan, J. Dietary polyunsaturated fatty acids and eicosanoids: potential effects on the modulaton of inflammatory and immune cells: an overview. Nutrition 6, 24–44 (1990).

    CAS  PubMed  Google Scholar 

  7. 7

    Fievez, V., Dohme, F., Danneels, M., Raes, K. and Demeyer, D. Fish oils as potent rumen inhibitors and associated effects on rumen fermentation in vitro and in vivo. Anim. Feed Sci. Technol. 104, 41–58 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Yokoo, E.M. et al. (2003) Low level methylmercury exposure affects neuropsychological function in adults. Environmental Health: A Global Access Science Source 2, 1–11 (http://www.ehjournal.net/content/2/1/8) 2003.

    Google Scholar 

  9. 9

    Drexler, H. et al. Metabolic engineering of fatty acids for breeding of new oilseed crops: strategies, problems and first results. J. Plant Physiol. 160, 779–802 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Hites, R.A. et al. Global assessment of organic contamination in farmed salmon. Science 303, 226–229 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Yamazaki, K., Fujikawa, M., Hamazaki, T., Yano, S. & Shono, T. Comparison of the conversion rates of α-linolenic acid (18:3n-3) and stearidonic acid (18:4n-3) to longer polyunsaturated fatty acids in rats. Biochim. Biophys. Acta 1123, 18–26 (1992).

    CAS  Article  Google Scholar 

  12. 12

    Sayanova, O. et al. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of higher levels of Δ6-desaturated fatty acids in transgenic tobacco. Proc. Natl. Acad. Sci. USA 94, 4211–4216 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Cho, H.P., Nakamura, M.T. & Clarke, S.D. Cloning, expression, and nutrition regulation of the mammalian Δ6 desaturase. J. Biol. Chem. 274, 471–477 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Napier, J.A., Hey, S.J., Lacey, D.J. & Shewry, P.R. Identification of a Caenorhabditis elegans Δ6-fatty acid-desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem. J. 330, 611–614 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Girke, T., Zähringer, U., Lerchl, J. & Heinz, E. Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 15, 39–48 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Sperling, P. et al. A bifunctional Δ6-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b5 superfamily. Eur. J. Biochem. 267, 3801–3811 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Huang, Y.S. et al. Cloning of delta12- and delta6-desaturases from Mortierella alpina and recombinant production of gamma-linolenic acid in Saccharomyces cerevisiae. Lipids 34, 649–659 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Sakuradani, E., Kobayashi, M. & Shimizu, S. Delta6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238, 445–453 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Beaudoin, F. et al. Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc. Natl. Acad. Sci. USA 97, 6421–6426 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Parker-Barnes, J.M. et al. Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 97, 8284–8289 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Zank, T.K. et al. Cloning and functional characterization of an enzyme involved in the elongation of Delta6-polyunsaturated fatty acids from the moss Physcomitrella patens. Plant J. 31, 255–268 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Cho, H.P., Nakamura, M.T. & Clarke, S.D. Cloning, expression, and fatty acid regulation of the human Δ5 desaturase. J. Biol. Chem. 274, 37335–37339 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Leonard, A.E. et al. cDNA cloning and characterization of a human Δ5-desaturase involved in the biosynthesis of arachidonic acid. Biochem. J. 347, 719–724 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Watts, J.L. & Browse, J. Isolation and characterization of a Δ5-fatty acid desaturase from Caenorhabditis elegans. Arch. Biochem. Biophys. 362, 175–182 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Michaelson, L.V. et al. Functional identification of a fatty acid Δ5-desaturase gene from Caenorhabditis elegans. FEBS Lett. 439, 215–218 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Michaelson, L.V., Lazarus, C.M., Griffiths, G., Napier, J.A. & Stobart, A.K. Isolation of a Δ5-fatty acid desaturase gene from Mortierella alpina. J. Biol. Chem. 273, 19055–19059 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Knutzon, D.S. et al. Identification of Δ5-desaturase from Mortierella alpina by heterologous expression in bakers' yeast and canola. J. Biol. Chem. 273, 29360–29366 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Qi, B. et al. Identification of a cDNA encoding a novel C18-Δ9-polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett. 510, 159–165 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Wallis and Browse. The Δ8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch. Biochem. Biophys. 365, 307–316 (1999).

  30. 30

    Zhang, J.Y., Yu, Q.T., Liu, B.N. & Huang, Z.H. Chemical modification in mass spectrometry IV – 2-alkenyl-4,4-dimethyloxazolines as derivatives for the double bond location of long-chain olefinic acids. Biomed. Environ. Mass Spectrom. 15, 33–44 (1988).

    CAS  Article  Google Scholar 

  31. 31

    Berdeaux, O. & Wolff, R.L. Gas-liquid chromatography-mass spectrometry of the 4,4-dimethyloxazoline derivatives of Δ5-unsaturated polymethylene-interrupted fatty acids from conifer seed oils. J. Am. Oil Chem. Soc. 73, 1323–1326 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Qi, B. et al. The variant 'his-box' of the C18-Δ9-PUFA-specific elongase IgASE1 from Isochrysis galbana is essential for optimum enzyme activity. FEBS Lett. 547, 137–139 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Larson, T.R. & Graham, I.A. Application of a new method for the sensitive detection and quantification of acyl-CoA esters in Arabidopsis thaliana seedlings and mature leaves. Biochem. Soc. Trans. 28, 575–577 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Domergue, F. et al. Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J. Biol. Chem. 278, 35115–35126 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Stymne, S. & Stobart, A.K. Evidence for the reversibility of the acyl-CoA: lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower cotyledons and rat liver. Biochem. J. 223, 305–314 (1984).

    CAS  Article  Google Scholar 

  36. 36

    Stymne, S. & Stobart, A.K. Triglycerol Biosynthesis. in The Biochemistry of Plants: A Comprehensive Treatise (ed. Stumpf, P.K.) 175–214 (Academic Press, NY, 1988).

    Google Scholar 

  37. 37

    Millar, A.A., Wrischer, M. & Kunst, L. Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. Plant Cell 10, 1889–1902 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Qi, B. et al. Expression of the Isochrysis C18-Δ9 polyunsaturated fatty acid specific elongase component alters Arabidopsis glycerolipid profiles. Plant Physiol. (in the press) (2004).

  39. 39

    Xiang, C., Han, P., Lutziger, I., Wang, K. & Oliver, D.J. A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711–717 (1999).

    CAS  Article  Google Scholar 

  40. 40

    McCormac, A.C., Elliott, M.C. & Chen, D.-F. pBECKS. A flexible series of binary vectors for Agrobacterium-mediated plant transformation. Mol. Biotechnol. 8, 199–213 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS  Article  Google Scholar 

  42. 42

    Browse, J., McCourt, J. & Somerville, C.R. Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal. Biochem. 152, 141–145 (1986).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from BASF Plant Sciences GmbH, Germany, and the Scottish Executive Environment and Rural Affairs Department. Long Ashton Research Station (1903–2003) and Rothamsted Research receive grant in aid from the Biotechnology and Biological Sciences Research Council (BBSRC) UK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Baoxiu Qi.

Ethics declarations

Competing interests

The research reported here was funded in part by BASF BmbH, Ludwigshafen, Germany.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qi, B., Fraser, T., Mugford, S. et al. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22, 739–745 (2004). https://doi.org/10.1038/nbt972

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing