Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants


Phytoremediation of highly water soluble and volatile organic xenobiotics is often inefficient because plants do not completely degrade these compounds through their rhizospheres. This results in phytotoxicity and/or volatilization of chemicals through the leaves, which can cause additional environmental problems. We demonstrate that endophytic bacteria equipped with the appropriate degradation pathway improve the in planta degradation of toluene. We introduced the pTOM toluene-degradation plasmid of Burkholderia cepacia G4 into B. cepacia L.S.2.4, a natural endophyte of yellow lupine. After surface-sterilized lupine seeds were successfully inoculated with the recombinant strain, the engineered endophytic bacteria strongly degraded toluene, resulting in a marked decrease in its phytotoxicity, and a 50–70% reduction of its evapotranspiration through the leaves. This strategy promises to improve the efficiency of phytoremediating volatile organic contaminants.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of the experimental setup for measuring toluene evapotranspiration.
Figure 2: Difference in biomass (g) between inoculated and control yellow lupine plants, before and after adding toluene.
Figure 3: Total amount of toluene (μg) detected in Tenax traps connected with the upper compartment (containing the aerial part of L. luteus plant) determined by GC-MS.
Figure 4: Phytotoxic effect of toluene on yellow lupine grown in nonsterile sandy soil under the greenhouse conditions.
Figure 5: Biomass (g) of yellow lupine plants, grown in nonsterile sandy soil under the greenhouse conditions, after 14-d exposure to the different toluene concentrations.


  1. 1

    Schnoor, L.J., Licht, A.L., McCutchon, C.S., Wolfe, N.L. & Carreira, H.L. Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29, 318A–323A (1995).

    CAS  Article  Google Scholar 

  2. 2

    Harvey P.J. et al. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ. Sci. Pollut. Res. Int. 9, 29–47 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Cunningham, S.D. & Berti, W.B. Remediation of contaminated soils with green plants: an overview. In Vitro Cell. Dev. Biol. 29, 207–212 (1993).

    Article  Google Scholar 

  4. 4

    Trapp, S., Köhler, A., Larsen, L.C., Zambrano, K.C. & Karlson, U. Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. J. Soils Sed. 1, 71–76 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Trapp, S., Zambrano, K.C., Kusk, K.O. & Karlson, U. A phytotoxicity test using transpiration of willows. Arch. Environ. Contam. Toxicol. 39, 154–160 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Doucete, W.J. et al. Phytoremediation of dissolved phase trichloroethylene using mature vegetation. in Bioremediation and Phytoremediation: Chlorinated and Recalcitrant Compounds (eds. Wickraamanayakee, G.B. & Hinchee, R.E.) 251–256 (Battelle Press, Columbus, Ohio, USA, 1998).

    Google Scholar 

  7. 7

    Van der Lelie, D., Schwitzguebel, J.-P., Glass, D.J., Vangronsveld, J. & Baker A. Assessing phytoremediation's progress in the United States and Europe. Environ. Sci. Technol. 35, 446A–452A (2001).

    CAS  Article  Google Scholar 

  8. 8

    Schwitzguebel, J.-P., van der Lelie, D., Glass, D.J., Vangronsveld, J. & Baker A. Phytoremediation: European and American trends, successes, obstacles and needs. J. Soil Sed. 2, 91–99 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Ma, X. & Burken, J.G. TCE diffusion to the atmosphere in phytoremediation applications. Environ. Sci. Technol. 37, 2534–2539 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Burken, J.G. & Schnoor, J.L. Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. Int. J. Phytorem. 1, 139–151 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Misaghi, I.J. & Donndelinger, C.R. Endophytic bacteria in symptom free cotton plants. Phytopathol. 80, 808–811 (1990).

    Article  Google Scholar 

  12. 12

    James, K. & Olivares, F.L. Infection and colonization of sugar cane and other Graminaceous plants by endophytic diazotrophs. Crit. Rev. Plant Sci. 17, 77–119 (1997).

    Article  Google Scholar 

  13. 13

    Lodewyckx, C. et al. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002).

    Article  Google Scholar 

  14. 14

    Frommel, M.I., Nowak, J. & Lazarovits, G. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. Tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol. 96, 928–936 (1991).

    CAS  Article  Google Scholar 

  15. 15

    Lodewyckx, C. et al. The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int. J. Phytorem. 3, 173–187 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Taghavi, S., Delanghe, H., Lodewyckx, C., Mergeay, M. & van der Lelie, D. Nickel-resistance-based minitransposons: new tools for genetic manipulation of environmental bacteria. Appl. Environ. Microbiol. 67, 1015–1019 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Reiter, B., Burgmann, H., Burg, K. & Sessitsch, A. Endophytic nifH gene diversity in African sweet potato. Can. J. Microbiol. 49, 549–555 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Bent, E. & Chanway, C.P. Potential for misidentification of a spore-forming Paenibacillus polymyxa isolate as an endophyte by using culture-based methods. Appl. Environ. Microbiol. 68, 4650–4652 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Elvira-Recuenco, M. & van Vuurde, J.W. Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can. J. Microbiol. 46, 1036–1041 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Heyrman, J. et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int. J. Syst. Evol. Microbiol. 54 (Pt 1), 47–57 (2004).

    Article  Google Scholar 

  21. 21

    Siciliano, S.D. et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 67, 2469–2475 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Sharp R.R., Bryers J.D., Jones W.G. & Shields, M.S. Activity and stability of a recombinant plasmid–borne TCE degradative pathway in suspended cultures. Biotechnol. Bioeng. 57, 287–296 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Shields, M.S. & Reagin, M.J. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl. Environ. Microbiol. 58, 3977–3983 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Germaine, K. et al. Colonization of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol. in the press (2004).

  25. 25

    McCrady, J., Mc Farlane, C. & Lindstrom, F. The transport and affinity of substituted benzenes in soybean stems. J. Exp. Botany 38, 1875–1890 (1987).

    CAS  Article  Google Scholar 

  26. 26

    Shields, M.S., Reagin, M.J., Gerger, R.R., Campbell, R. & Somerville, C. TOM, a new aromatic degradative plasmid from Burkolderia (Pseudomonas) cepacia G4. Appl. Environ. Microbiol. 61, 1352–1356 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Schlegel, H.G., Kaltwasser, H. & Gottschalk, G. Ein Sumbersverfahren zur Kultur wasserstoffoxidierender Bacterien: Wachstum physiologische Untersuchungen. Arch. Mikrobiol. 38, 205–222 (1961).

    Article  Google Scholar 

  28. 28

    Mergeay, M., Nies, D., Schlegel, H.G., Gerits, J. & Van Gijsegem, F. Alcaligens eutrophus CH34 is a facultative chemolithotroph with plasmid–bound resistance to heavy metals. J. Bacteriol. 162, 328–334 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The European Commission under the Fifth Framework Program, Quality of Life supported this work by grant no. QLK3-2000-00164 entitled “Endegrade.” The work was also supported by Ford Motor Company (Genk Plant and the Environmental Quality Office Europe), which also provides experimental sites. We thank K. Germaine and E. Keogh for providing us with tomA specific primers, F. Tibaldi for statistic analysis of our data, D. Van Genechten for assisting in the conjugation experiments and J. Czech and R. Carleer for help with toluene analysis. Special thanks are due to M. Mergeay who interested us in the potential of endophytic bacteria. D.v.d.L. and S.T. are presently being supported by Laboratory Directed Research and Development funds at the Brookhaven National Laboratory under contract with the US Department of Energy. This paper is dedicated to the memory of Licy Oeyen.

Author information



Corresponding author

Correspondence to Daniel van der Lelie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barac, T., Taghavi, S., Borremans, B. et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22, 583–588 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing