Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversible site-selective labeling of membrane proteins in live cells

Abstract

Chemical and biological labeling is fundamental for the elucidation of the function of proteins within biochemical cellular networks. In particular, fluorescent probes allow detection of molecular interactions, mobility and conformational changes of proteins in live cells with high temporal and spatial resolution1,2,3. We present a generic method to label proteins in vivo selectively, rapidly (seconds) and reversibly, with small molecular probes that can have a wide variety of properties. These probes comprise a chromophore and a metal-ion-chelating nitrilotriacetate (NTA) moiety, which binds reversibly and specifically to engineered oligohistidine sequences in proteins of interest4. We demonstrate the feasibility of the approach by binding NTA-chromophore conjugates5 to a representative ligand-gated ion channel and G protein–coupled receptor, each containing a polyhistidine sequence. We investigated the ionotropic 5HT3 serotonin receptor by fluorescence measurements to characterize in vivo the probe-receptor interactions, yielding information on structure and plasma membrane distribution of the receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Labeling GFP-His6 by NTA probes.
Figure 2: Structure of 5HT3R in live cells investigated by FRET using NTA probes.
Figure 3: In vivo labeling of ionotropic and G protein–coupled receptors.

Similar content being viewed by others

References

  1. Cha, A., Snyder, G.E., Selvin, P.R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999).

    Article  CAS  Google Scholar 

  2. Schwille, P., Haupts, U., Maiti, S. & Webb, W.W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77, 2251–2265 (1999).

    Article  CAS  Google Scholar 

  3. Chamberlain, C. & Hahn, K.M. Watching proteins in the wild: fluorescence methods to study protein dynamics in living cells. Traffic 1, 755–762 (2000).

    Article  CAS  Google Scholar 

  4. Hochuli, E., Dobeli, H. & Schacher, A. New metal chelate absorbant selective for proteins and peptides containing neighbouring histidine residues. J. Chromatography 411, 177–184 (1987).

    Article  CAS  Google Scholar 

  5. Stora, T., Hovius, R., Dienes, Z., Pachoud, M. & Vogel, H. Metal ion trace detection by a chelator-modified gold electrode: a comparison of surface to bulk affinity. Langmuir 13, 5211–5214 (1997).

    Article  CAS  Google Scholar 

  6. Holmes, K.L. & Lantz, L.M. Protein labeling with fluorescent probes. Methods Cell Biol. 63, 185–204 (2001).

    Article  CAS  Google Scholar 

  7. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  8. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  Google Scholar 

  9. Mendel, D., Cornish, V.W. & Schultz, P.G. Site-directed mutagenesis with an expanded genetic code. Annu. Rev. Biophys. Biomol. Struct. 24, 435–462 (1995).

    Article  CAS  Google Scholar 

  10. Ilegems, E., Pick, H.M. & Vogel, H. Monitoring mis-acylated tRNA suppression efficiency in mammalian cells via EGFP fluorescence recovery. Nucleic Acids Res. 30, e128 (2002).

    Article  Google Scholar 

  11. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  12. Giriat, I. & Muir, T.W. Protein semi-synthesis in living cells. J. Am. Chem. Soc. 215, 7180–7181 (2003).

    Article  Google Scholar 

  13. McMahan, S.A. & Burgess, R.R. Single-step synthesis and characterization of biotinylated nitrilotriaceticacid, a unique reagent for the detection of histidine-tagged proteins immobilized on nitrocellulose. Anal. Biochem. 236, 101–106 (1996).

    Article  CAS  Google Scholar 

  14. Kapanidis, A.N., Ebright, Y.W. & Ebright, R.H. Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic acid (n)-fluorochrome conjugates. J. Am. Chem. Soc. 123, 12123–12125 (2001).

    Article  CAS  Google Scholar 

  15. Keller, T.A. et al. Reversible oriented immobilization of histidine-tagged proteins on gold surfaces using a chelator thioalkane. Supramolecular Science 2, 155–160 (1995).

    Article  CAS  Google Scholar 

  16. Reeves, D.C. & Lummis, S.C. The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel. Mol. Membr. Biol. 19, 11–26 (2002).

    Article  CAS  Google Scholar 

  17. Tairi, A.P. et al. Ligand binding to the serotonin 5HT3 receptor studied with a novel fluorescent ligand. Biochemistry 37, 15850–15864 (1998).

    Article  CAS  Google Scholar 

  18. Schreiter, C. et al. Characterization of the ligand-binding site of the serotonin 5-HT3 receptor: the role of glutamate residues 97, 224, and 235. J. Biol. Chem. 278, 22709–22716 (2003).

    Article  CAS  Google Scholar 

  19. White, S.H. & Wimley, W.C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    Article  CAS  Google Scholar 

  20. Maricq, A.V., Peterson, A.S., Brake, A.J., Myers, R.M. & Julius, D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254, 432–437 (1991).

    Article  CAS  Google Scholar 

  21. Sprong, H., Van der Sluijs, P. & Van Meer, G. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2, 504–513 (2001).

    Article  CAS  Google Scholar 

  22. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).

    Article  CAS  Google Scholar 

  23. Jares-Erijman, E.A. & Jovin, T.M. FRET imaging. Nat. Biotech. 21, 1387–1395 (2003).

    Article  CAS  Google Scholar 

  24. Maggi, C.A. & Schwartz, T.W. The dual nature of the tachykinin NK1 receptor. Trends Pharmacol. Sci. 18, 351–355 (1997).

    Article  CAS  Google Scholar 

  25. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell. Biol. 3, 639–650 (2002).

    Article  CAS  Google Scholar 

  26. Pick, H. et al. Monitoring expression and clustering of the ionotropic 5HT3 receptor in plasma membranes of live biological cell. Biochemistry 42, 877–884 (2003).

    Article  CAS  Google Scholar 

  27. Van der Meer, B.W., Coker, G. & Chen, S.Y.S. Resonance energy transfer: theory and data (VCH Publishers, New York, 1994).

    Google Scholar 

  28. Boess, F.G., Beroukhim, R. & Martin, I.L. Ultrastructure of the 5-hydroxytryptamine3 receptor. J. Neurochem. 64, 1401–1405 (1995).

    Article  CAS  Google Scholar 

  29. Wohland, T., Friedrich, K., Hovius, R. & Vogel, H. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry 38, 8671–8681 (1999).

    Article  CAS  Google Scholar 

  30. Vallotton, P. et al. Mapping the antagonist binding site of the serotonin type 3 receptor by fluorescence resonance energy transfer. Biochemistry 40, 12237–12242 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to several colleagues: Horst Blasey for the stable cell line expressing 5HT3R-C-His6; Bruno Meyer for construction and functional expression of GFP-NK1-His10; David Lovinger, Horst Pick, Erwin Ilegems, CĂ©dric Deluz and Kenneth Lundstrom for plasmids encoding 5HT3R, 5HT3R-Loop-His6, 5HT3R-N-His6, 5HT3R-C-His10 and NK1R; Andreas Heusler for synthesizing NTA-Rho; Annmarie Surprenant and Christoph Schreiter for the electrophysiological characterization of the oligohistidine-tagged 5HT3Rs; Martha Liley and Daniel Abankwa for carefully reading the manuscript. This work was financially supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Vogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guignet, E., Hovius, R. & Vogel, H. Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22, 440–444 (2004). https://doi.org/10.1038/nbt954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing