Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Capturing and profiling adult hair follicle stem cells


The hair follicle bulge possesses putative epithelial stem cells. Characterization of these cells has been hampered by the inability to target bulge cells genetically. Here, we use a Keratin1-15 (Krt1-15, also known as K15) promoter to target mouse bulge cells with an inducible Cre recombinase construct or with the gene encoding enhanced green fluorescent protein (EGFP), which allow for lineage analysis and for isolation of the cells. We show that bulge cells in adult mice generate all epithelial cell types within the intact follicle and hair during normal hair follicle cycling. After isolation, adult Krt1-15-EGFP-positive cells reconstituted all components of the cutaneous epithelium and had a higher proliferative potential than Krt1-15-EGFP-negative cells. Genetic profiling of hair follicle stem cells revealed several known and unknown receptors and signaling pathways important for maintaining the stem cell phenotype. Ultimately, these findings provide potential targets for the treatment of hair loss and other disorders of skin and hair.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: All keratinocyte lineages within hair follicles are derived from bulge cells during normal hair follicle cycling in vivo.
Figure 2: Isolation of hair follicle bulge cells from dorsal skin of adult Krt-15-EGFP mice.
Figure 3: Isolated hair follicle bulge cells exhibit a high proliferative potential in vitro and retain their pluripotent nature.

Accession codes




  1. 1

    Cotsarelis, G., Cheng, S.Z., Dong, G., Sun, T.T. & Lavker, R.M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57, 201–209 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Tsai, R.J., Li, L.M. & Chen, J.K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 343, 86–93 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Bernstein, I.D., Andrews, R.G. & Rowley, S. Isolation of human hematopoietic stem cells. Blood Cells 20, 15–24 (1994).

    CAS  PubMed  Google Scholar 

  4. 4

    Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Cotsarelis, G. & Millar, S.E. Towards a molecular understanding of hair loss and its treatment. Trends in Mol. Med. 7, 293–301 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Cotsarelis, G., Sun, T.T. & Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    CAS  Article  Google Scholar 

  7. 7

    Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111, 3179–3188 (1998).

    CAS  PubMed  Google Scholar 

  8. 8

    Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Morris, R.J. & Potten, C.S. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol. 112, 470–475 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Wilson, C. et al. Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. Differentiation 55, 127–136 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T. & Lavker, R.M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Liu, Y., Lyle, S., Yang, X. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Panteleyev, A.A., Jahoda, C.A. & Christiano, A.M. Hair follicle predetermination. J. Cell Sci. 114, 3419–3431 (2001).

    CAS  PubMed  Google Scholar 

  15. 15

    Lavker, R.M. et al. Hair follicle stem cells. J. Investig. Dermatol. Symp. Proc. 8, 28–38 (2003).

    Article  Google Scholar 

  16. 16

    Berton, T.R. et al. Characterization of an inducible, epidermal-specific knockout system: differential expression of lacZ in different Cre reporter mouse strains. Genesis 26, 160–161 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Potten, C.S. & Booth, C. Keratinocyte stem cells: a commentary. J. Invest. Dermatol. 119, 888–899 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Watt, F.M. Stem cell fate and patterning in mammalian epidermis. Curr. Opin. Genet. Dev. 11, 410–417 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Braun, K.M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Trempus, C.S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120, 501–511 (2003).

    CAS  PubMed  Google Scholar 

  21. 21

    Kobayashi, K., Rochat, A. & Barrandon, Y. Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc. Natl. Acad. Sci. USA 90, 7391–7395 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Sutherland, H.J., Lansdorp, P.M., Henkelman, D.H., Eaves, A.C. & Eaves, C.J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl. Acad. Sci. USA 87, 3584–3588 (1990).

    CAS  Article  Google Scholar 

  23. 23

    Kamimura, J., Lee, D., Baden, H.P., Brisette, J. & Dotto, G.P. Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation potential. J. Invest. Dermatol. 109, 534–540 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Weinberg, W.C. et al. Reconstitution of hair follicle development in vivo: determination of follicle formation, hair growth, and hair quality by dermal cells. J. Invest. Dermatol. 100, 229–236 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Jahoda, C.A., Reynolds, A.J. & Oliver, R.F. Induction of hair growth in ear wounds by cultured dermal papilla cells. J. Invest. Dermatol. 101, 584–590 (1993).

    CAS  Article  Google Scholar 

  26. 26

    Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Ito, M. & Kizawa, K. Expression of calcium-binding S100 proteins A4 and A6 in regions of the epithelial sac associated with the onset of hair follicle regeneration. J. Invest. Dermatol. 116, 956–963 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Yuen, T., Wurmbach, E., Pfeffer, R.L., Ebersole, B.J. & Sealfon, S.C. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30, e48 (2002).

    Article  Google Scholar 

  30. 30

    Tseng, H. & Green, H. Association of basonuclin with ability of keratinocytes to multiply and with absence of terminal differentiation. J. Cell Biol. 126, 495–506 (1994).

    CAS  Article  Google Scholar 

  31. 31

    Petiot, A. et al. A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development 130, 5493–5501 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Van Mater, D., Kolligs, F.T., Dlugosz, A.A. & Fearon, E.R. Transient activation of beta-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 17, 1219–1224 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Meier, N., Dear, T.N. & Boehm, T. Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. Mech. Dev. 89, 215–221 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Zheng, Y. et al. Scd1 is expressed in sebaceous glands and is disrupted in the asebia mouse. Nat. Genet. 23, 268–270 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Kaufman, C.K. et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 17, 2108–2122 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Christoph, T. et al. Characteristics of the human hair follicle immune system. Br. J. Dermatol. 142, 862–873 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Jaworsky, C., Kligman, A.M. & Murphy, G.F. Characterization of inflammatory infiltrates in male pattern alopecia: implications for pathogenesis. Br. J. Dermatol. 127, 239–246 (1992).

    CAS  Article  Google Scholar 

  39. 39

    Buhl, A.E., Conrad, S.J., Waldon, D.J. & Brunden, M.N. Potassium channel conductance as a control mechanism in hair follicles. J. Invest. Dermatol. 101, 148S–152S (1993).

    CAS  Article  Google Scholar 

  40. 40

    Kellendonk, C. et al. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404–1411 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Paus, R., Stenn, K.S. & Link, R.E. The induction of anagen hair growth in telogen mouse skin by cyclosporine A administration. Lab Invest. 60, 365–369 (1989).

    CAS  PubMed  Google Scholar 

  42. 42

    Morris, R.J., Fischer, S.M., Klein-Szanto, A.J. & Slaga, T.J. Subpopulations of primary adult murine epidermal basal cells sedimented on density gradients. Cell Tissue Kinet. 23, 587–602 (1990).

    CAS  PubMed  Google Scholar 

  43. 43

    Gilmour, S.K., Teti, K.A., Wu, K.Q. & Morris, R.J. A simple in vivo system for studying epithelialization, hair follicle formation, and invasion using primary epidermal cells from wild-type and transgenic ornithine decarboxylase-overexpressing mouse skin. J. Invest. Dermatol. 117, 1674–1676 (2001).

    CAS  Article  Google Scholar 

  44. 44

    Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Xu, X., Lyle, S., Liu, Y., Solky, B. & Cotsarelis, G. Differential expression of cyclin D1 in the human hair follicle. Am. J. Pathol. 163, 969–978 (2003).

    CAS  Article  Google Scholar 

Download references


We thank Jean Richa for generation of transgenic mice, Hank Pletcher for assistance with FACS, Don Baldwin for microarray analysis, Dorothy Campbell for histological preparations and John Stanley and Peter Sterling for discussion and comments on the manuscript. This work was supported by NIH grants AR46837 to G.C. and CA97957 to R.J.M. and G.C.

Author information



Corresponding author

Correspondence to George Cotsarelis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morris, R., Liu, Y., Marles, L. et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22, 411–417 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing