Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antimicrobial drug discovery through bacteriophage genomics

Abstract

Over evolutionary time bacteriophages have developed unique proteins that arrest critical cellular processes to commit bacterial host metabolism to phage reproduction. Here, we apply this concept of phage-mediated bacterial growth inhibition to antibiotic discovery. We sequenced 26 Staphylococcus aureus phages and identified 31 novel polypeptide families that inhibited growth upon expression in S. aureus. The cellular targets for some of these polypeptides were identified and several were shown to be essential components of the host DNA replication and transcription machineries. The interaction between a prototypic pair, ORF104 of phage 77 and DnaI, the putative helicase loader of S. aureus, was then used to screen for small molecule inhibitors. Several compounds were subsequently found to inhibit both bacterial growth and DNA synthesis. Our results suggest that mimicking the growth-inhibitory effect of phage polypeptides by a chemical compound, coupled with the plethora of phages on earth, will yield new antibiotics to combat infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional screening for growth-inhibitory polypeptides encoded by phage 77.
Figure 2: Interaction of 77ORF104 and S. aureus DnaI.
Figure 3: dnaI essentiality analysis.
Figure 4: Effects of phage inhibitory ORF expression on metabolic pathways.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Salgado, C.D., Farr, B.M. & Calfee, D.P. Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin. Infect. Dis. 36, 131–139 (2003).

    Article  PubMed  Google Scholar 

  2. Tenover, F.C., Biddle, J.W. & Lancaster, M.V. Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg. Infect. Dis. 7, 327–332 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khare, M. & Keady, D. Antimicrobial therapy of methicillin resistant Staphylococcus aureus infection. Expert Opin. Pharmacother. 4, 165–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Kuroda, M. et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Moir, D.T., Shaw, K.J., Hare, R.S. & Vovis, G.F. Genomics and antimicrobial drug discovery. Antimicrob. Agents Chemother. 43, 439–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McDevitt, D. & Rosenberg, M. Exploiting genomics to discover new antibiotics. Trends Microbiol. 9, 611–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Ji, Y. et al. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266–2269 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Forsyth, R.A. et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387–1400 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi, K. et al. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100, 4678–4683 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nechaev, S. & Severinov, K. Inhibition of Escherichia coli RNA polymerase by bacteriophage T7 gene 2 protein. J. Mol. Biol. 289, 815–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Orsini, G., Ouhammouch, M., Le Caer, J.P. & Brody, E.N. The asiA gene of bacteriophage T4 codes for the anti-sigma 70 protein. J. Bacteriol. 175, 85–93 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mallory, J.B., Alfano, C. & McMacken, R. Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J. Biol. Chem. 265, 13297–13307 (1990).

    CAS  PubMed  Google Scholar 

  13. Odegrip, R., Schoen, S., Haggard-Ljungquist, E., Park, K. & Chattoraj, D.K. The interaction of bacteriophage P2 B protein with Escherichia coli DnaB helicase. J. Virol. 74, 4057–4063 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biswas, B. et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70, 204–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stone, R. Bacteriophage therapy. Stalin's forgotten cure. Science 298, 728–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Schuch, R., Nelson, D. & Fischetti, V.A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Loeffler, J.M., Nelson, D. & Fischetti, V.A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294, 2170–2172 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Ackermann, H.-W. & DuBow, M.S. Viruses of Prokaryotes, vol. 2 (CRC Press, Boca Raton, Florida, 1987).

    Google Scholar 

  19. Kaneko, J., Kimura, T., Narita, S., Tomita, T. & Kamio, Y. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene 215, 57–67 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Tauriainen, S., Karp, M., Chang, W. & Virta, M. Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl. Environ. Microbiol. 63, 4456–4461 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kreiswirth, B.N. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, I.N., Smith, D.L. & Young, R. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54, 799–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Young, I., Wang, I. & Roof, W.D. Phages will out: strategies of host cell lysis. Trends Microbiol. 8, 120–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Sonnhammer, E.L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182 (1998).

    CAS  PubMed  Google Scholar 

  25. Simpson, R.J. Proteins and proteomics: a laboratory manual (Cold Spring Harbor Laboratory Press, New York, 2002).

    Google Scholar 

  26. Bruand, C., Farache, M., McGovern, S., Ehrlich, S.D. & Polard, P. DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Mol. Microbiol. 42, 245–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Marsin, S., McGovern, S., Ehrlich, S.D., Bruand, C. & Polard, P. Early steps of Bacillus subtilis primosome assembly. J. Biol. Chem. 276, 45818–45825 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Velten, M. et al. A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Mol. Cell 11, 1009–1020 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Mathis, G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin. Chem. 41, 1391–1397 (1995).

    CAS  PubMed  Google Scholar 

  30. Jana, M., Luong, T.T., Komatsuzawa, H., Shigeta, M. & Lee, C.Y. A method for demonstrating gene essentiality in Staphylococcus aureus. Plasmid 44, 100–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Walsh, C. Antibiotics: Actions, Origins, Resistance (ASM Press, Washington, DC, 2003).

    Book  Google Scholar 

  32. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A laboratory manual, edn. 2 (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  33. Adams, M.H. Bacteriophages (Interscience Publishers, New York, NY, 1959).

    Google Scholar 

  34. Schenk, S. & Laddaga, R.A. Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol. Lett. 73, 133–138 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Methot, N., Song, M.S. & Sonenberg, N. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol. Cell Biol. 16, 5328–5334 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaelin, W.G., Jr. et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70, 351–364 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. De Crescenzo, G., Grothe, S., Lortie, R., Debanne, M.T. & O'Connor-McCourt, M. Real-time kinetic studies on the interaction of transforming growth factor alpha with the epidermal growth factor receptor extracellular domain reveal a conformational change model. Biochemistry 39, 9466–9476 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. NCCLS specialty collection: susceptibility testing, edn. 5 (NCCLS, Wayne, PA, 2000).

  39. Kaito, C., Kurokawa, K., Hossain, M.S., Akimitsu, N. & Sekimizu, K. Isolation and characterization of temperature-sensitive mutants of the Staphylococcus aureus dnaC gene. FEMS Microbiol. Lett. 210, 157–164 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Virta for providing us with the pTOO21 vector and C.Y. Lee for vectors used in essentiality analysis. We thank all PhageTech technical staff for their assistance during the course of this research. We also would like to thank the National Research Council (Canada) Industrial Research Assistance Program for their support of part of our research. J.L., M.D., M.C., N.H., T.K., G.M. and R.S. are recipients of the Natural Sciences and Engineering Research Council of Canada Industrial Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Ethics declarations

Competing interests

All the authors are/were employed or compensated by PhageTech, which owns the intellectual property related to the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Dehbi, M., Moeck, G. et al. Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22, 185–191 (2004). https://doi.org/10.1038/nbt932

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing