Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Optical coherence tomography for ultrahigh resolution in vivo imaging

Abstract

Optical coherence tomography (OCT) is an emerging biomedical optical imaging technique that performs high-resolution, cross-sectional tomographic imaging of microstructure in biological systems. OCT can achieve image resolutions of 1–15 μm, one to two orders of magnitude finer than standard ultrasound. The image penetration depth of OCT is determined by the optical scattering and is up to 2–3 mm in tissue. OCT functions as a type of 'optical biopsy' to provide cross-sectional images of tissue structure on the micron scale. It is a promising imaging technology because it can provide images of tissue in situ and in real time, without the need for excision and processing of specimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of OCT imaging.
Figure 2: Ophthalmic OCT imaging and its development.
Figure 3: Intravascular OCT imaging and its development.
Figure 4: Imaging neoplastic changes.
Figure 5: Developments in OCT technology.

Similar content being viewed by others

References

  1. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fujimoto, J.G. et al. Optical biopsy and imaging using optical coherence tomography. Nat. Med. 1, 970–972 (1995).

    CAS  PubMed  Google Scholar 

  3. Schmitt, J.M. Optical coherence tomography (OCT): a review. IEEE J. Selected Topics Quantum Electron. 5, 1205–1215 (1999).

    CAS  Google Scholar 

  4. Brezinski, M.E. & Fujimoto, J.G. Optical coherence tomography: high-resolution imaging in nontransparent tissue. IEEE J. Selected Topics Quantum Electron. 5, 1185–1192 (1999).

    CAS  Google Scholar 

  5. Fujimoto, J.G., Pitris, C., Boppart, S.A. & Brezinski, M.E. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Drexler, W. et al. In vivo ultrahigh-resolution optical coherence tomography. Optics Lett. 24, 1221–1223 (1999).

    CAS  Google Scholar 

  7. Schmitt, J.M., Knuttel, A., Yadlowsky, M. & Eckhaus, M.A. Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Physics Med. Biol. 39, 1705–1720 (1994).

    CAS  Google Scholar 

  8. Duguay, M.A. Light photographed in flight. Am. Sci. 59, 551–556 (1971).

    Google Scholar 

  9. Youngquist, R., Carr, S. & Davies, D. Optical coherence-domain reflectometry: a new optical evaluation technique. Optics Lett. 12, 158–160 (1987).

    CAS  Google Scholar 

  10. Takada, K., Yokohama, I., Chida, K. & Noda, J. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Optics 26, 1603–1608 (1987).

    CAS  Google Scholar 

  11. Gilgen, H.H., Novak, R.P., Salathe, R.P., Hodel, W. & Beaud, P. Submillimeter optical reflectometry. IEEE J. Lightwave Technol. 7, 1225–1233 (1989).

    CAS  Google Scholar 

  12. Fercher, A.F., Mengedoht, K. & Werner, W. Eye-length measurement by interferometry with partially coherent light. Optics Lett. 13, 1867–1869 (1988).

    Google Scholar 

  13. Huang, D., Wang, J., Lin, C.P., Puliafito, C.A. & Fujimoto, J.G. Micron-resolution ranging of cornea and anterior chamber by optical reflectometry. Lasers Surgery Med. 11, 419–425 (1991).

    CAS  Google Scholar 

  14. Swanson, E.A. et al. High-speed optical coherence domain reflectometry. Optics Lett. 17, 151–153 (1992).

    CAS  Google Scholar 

  15. Izatt, J.A., Hee, M.R., Owen, G.M., Swanson, E.A. & Fujimoto, J.G. Optical coherence microscopy in scattering media. Optics Lett. 19, 590–592 (1994).

    CAS  Google Scholar 

  16. Podoleanu, A.G. et al. Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. J. Biomed. Optics 3, 12–20 (1998).

    CAS  Google Scholar 

  17. Podoleanu, A.G., Rogers, J.A., Jackson, D.A. & Dunne, S. Three-dimensional OCT images from retina and skin. Optics Express 7 (2000).

  18. Swanson, E.A. et al. In vivo retinal imaging by optical coherence tomography. Optics Lett. 18, 1864–1866 (1993).

    CAS  Google Scholar 

  19. Hee, M.R. et al. Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332 (1995).

    CAS  PubMed  Google Scholar 

  20. Puliafito, C.A. et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 102, 217–229 (1995).

    CAS  PubMed  Google Scholar 

  21. Schuman, J.S. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch. Ophthalmol. 113, 586–596 (1995).

    CAS  PubMed  Google Scholar 

  22. Schuman, J.S. et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103, 1889–1898 (1996).

    CAS  PubMed  Google Scholar 

  23. Hee, M.R. et al. Optical coherence tomography of macular holes. Ophthalmology 102, 748–756 (1995).

    CAS  PubMed  Google Scholar 

  24. Gaudric, A. et al. Macular hole formation: new data provided by optical coherence tomography. Arch. Ophthalmol. 117, 744–751 (1999).

    CAS  PubMed  Google Scholar 

  25. Hee, M.R. et al. Quantitative assessment of macular edema with optical coherence tomography. Arch. Ophthalmol. 113, 1019–1029 (1995).

    CAS  PubMed  Google Scholar 

  26. Hee, M.R. et al. Optical coherence tomography of central serous chorioretinopathy. Am. J. Ophthalmol. 120, 65–74 (1995).

    CAS  PubMed  Google Scholar 

  27. Hee, M.R. et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103, 1260–1270 (1996).

    CAS  PubMed  Google Scholar 

  28. Wilkins, J.R. et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103, 2142–2151 (1996).

    CAS  PubMed  Google Scholar 

  29. Hee, M.R. et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 105, 360–370 (1998).

    CAS  PubMed  Google Scholar 

  30. Lederer, D.E. et al. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am. J. Ophthalmol. 135, 838–843 (2003).

    PubMed  Google Scholar 

  31. Zangwill, L.M., Williams, J., Berry, C.C., Knauer, S. & Weinreb, R.N. A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma. Ophthalmology 107, 1309–1315 (2000).

    CAS  PubMed  Google Scholar 

  32. Zangwill, L.M. et al. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch. Ophthalmol. 119, 985–993 (2001).

    CAS  PubMed  Google Scholar 

  33. Williams, Z.Y. et al. Optical coherence tomography measurement of nerve fiber layer thickness and the likelihood of a visual field defect. Am. J. Ophthalmol. 134, 538–546 (2002).

    PubMed  Google Scholar 

  34. Schuman, J.S. et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am. J. Ophthalmol. 135, 504–512 (2003).

    PubMed  Google Scholar 

  35. Falk, E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis, characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br. Heart J. 50, 127–134 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Davies, M.J. & Thomas, A.C. Plaque fissuring—the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br. Heart J. 53, 363–373 (1983).

    Google Scholar 

  37. Fuster, V.L et al. The pathogenesis of coronary artery disease and the acute coronary syndromes. New Engl. J. Med. 326, 242–249 (1992).

    CAS  PubMed  Google Scholar 

  38. Brezinski, M.E. et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 93, 1206–1213 (1996).

    CAS  PubMed  Google Scholar 

  39. Tearney, G.J. et al. Scanning single-mode fiber optic catheter–endoscope for optical coherence tomography. Optics Lett. 21, 543–545 (1996).

    CAS  Google Scholar 

  40. Tearney, G.J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

    CAS  PubMed  Google Scholar 

  41. Tearney, G.J. et al. Images in cardiovascular medicine. Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery. Circulation 94, 3013 (1996).

    CAS  PubMed  Google Scholar 

  42. Brezinski, M.E. et al. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 77, 397–403 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fujimoto, J.G. et al. High-resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 82, 128–133 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tearney, G.J. et al. Porcine coronary imaging in vivo by optical coherence tomography. Acta Cardiol. 55, 233–237 (2000).

    CAS  PubMed  Google Scholar 

  45. Jang, I.K., Tearney, G. & Bouma, B. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation 104, 2754 (2001).

    CAS  PubMed  Google Scholar 

  46. Jang, I.K. et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. Coll. Cardiol. 39, 604–609 (2002).

    PubMed  Google Scholar 

  47. Grube, E., Gerckens, U., Buellesfeld, L. & Fitzgerald, P.J. Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery. Circulation 106, 2409–2410 (2002).

    PubMed  Google Scholar 

  48. Pitris, C. et al. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. J. Gastroenterol. 35, 87–92 (2000).

    CAS  PubMed  Google Scholar 

  49. Bouma, B.E. & Tearney, G.J. Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography. Optics Lett. 24, 531–533 (1999).

    CAS  Google Scholar 

  50. Rollins, A.M. et al. Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. Optics Lett. 24, 1358–1360 (1999).

    CAS  Google Scholar 

  51. Li, X.D. et al. Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus. Endoscopy 32, 921–930 (2000).

    CAS  PubMed  Google Scholar 

  52. Li, X., Chudoba, C., Ko, T., Pitris, C. & Fujimoto, J.G. Imaging needle for optical coherence tomography. Optics Lett. 25, 1520–1522 (2000).

    CAS  Google Scholar 

  53. Izatt, J.A., Kulkarni, M.D., Wang, H.-W., Kobayashi, K. & Sivak, M.V. Jr. Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J. Selected Topics Quantum Electron. 2, 1017–1028 (1996).

    CAS  Google Scholar 

  54. Tearney, G.J. et al. Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am. J. Gastroenterol. 92, 1800–1804 (1997).

    CAS  PubMed  Google Scholar 

  55. Kobayashi, K., Izatt, J.A., Kulkarni, M.D., Willis, J. & Sivak, M.V. Jr. High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results. Gastrointest. Endosc. 47, 515–523 (1998).

    CAS  PubMed  Google Scholar 

  56. Tearney, G.J. et al. Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. Dig. Dis. Sci. 43, 1193–1199 (1998).

    CAS  PubMed  Google Scholar 

  57. Tearney, G.J. et al. Optical biopsy in human urologic tissue using optical coherence tomography. J. Urol. 157, 1915–1919 (1997).

    CAS  PubMed  Google Scholar 

  58. Jesser, C.A. et al. High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Br. J. Radiol. 72, 1170–1176 (1999).

    CAS  PubMed  Google Scholar 

  59. D'Amico, A.V., Weinstein, M., Li, X., Richie, J.P. & Fujimoto, J. Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland. Urology 55, 783–787 (2000).

    CAS  PubMed  Google Scholar 

  60. Pitris, C. et al. High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study. Am. J. Respir. Crit. Care Med. 157(5) Pt 1, 1640–1644 (1998).

    CAS  PubMed  Google Scholar 

  61. Pitris, C. et al. High-resolution imaging of gynecologic neoplasms using optical coherence tomography. Obstet. Gynecol. 93, 135–139 (1999).

    CAS  PubMed  Google Scholar 

  62. Boppart, S.A. et al. High-resolution imaging of endometriosis and ovarian carcinoma with optical coherence tomography: feasibility for laparoscopic-based imaging. Br. J. Obstet. Gynaecol. 106, 1071–1077 (1999).

    CAS  PubMed  Google Scholar 

  63. Sergeev, A.M. et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Optics Express [online] 1, 432–440 (1997).

    CAS  PubMed  Google Scholar 

  64. Feldchtein, F.I. et al. Endoscopic applications of optical coherence tomography. Optics Express [online] 3, 257–370 (1998).

    CAS  PubMed  Google Scholar 

  65. Brand, S. et al. Optical coherence tomography in the gastrointestinal tract. Endoscopy 32, 796–803 (2000).

    CAS  PubMed  Google Scholar 

  66. Jäckle, S. et al. In vivo endoscopic optical coherence tomography of the human gastrointestinal tract—toward optical biopsy. Endoscopy 32, 743–749 (2000).

    PubMed  Google Scholar 

  67. Jäckle, S. et al. In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus. Endoscopy 32, 750–755 (2000).

    PubMed  Google Scholar 

  68. Sivak, M.V. Jr. et al. High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointest. Endosc. 51(4) Pt 1, 474–479 (2000).

    PubMed  Google Scholar 

  69. Das, A. et al. High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS. Gastrointest. Endosc. 54, 219–224 (2001).

    CAS  PubMed  Google Scholar 

  70. Seitz, U. et al. First in vivo optical coherence tomography in the human bile duct. Endoscopy 33, 1018–1021 (2001).

    CAS  PubMed  Google Scholar 

  71. Poneros, J.M. et al. Optical coherence tomography of the biliary tree during ERCP. Gastrointest. Endosc. 55, 84–88 (2002).

    PubMed  Google Scholar 

  72. Poneros, J.M. et al. Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 120, 7–12 (2001).

    CAS  PubMed  Google Scholar 

  73. Feldchtein, F.I. et al. In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express [online] 3, 239–250 (1998).

    CAS  PubMed  Google Scholar 

  74. Shakhov, A.V. et al. Optical coherence tomography monitoring for laser surgery of laryngeal carcinoma. J. Surg. Oncol. 77, 253–258 (2001).

    CAS  PubMed  Google Scholar 

  75. Zagaynova, E.V. et al. In vivo optical coherence tomography feasibility for bladder disease. J. Urol. 167, 1492–1496 (2002).

    PubMed  Google Scholar 

  76. Tearney, G.J., Bouma, B.E. & Fujimoto, J.G. High-speed phase- and group-delay scanning with a grating-based phase control delay line. Optics Lett. 22, 1811–1813 (1997).

    CAS  Google Scholar 

  77. Rollins, A.M., Kulkarni, M.D., Yazdanfar, S., Ung-arunyawee, R. & Izatt, J.A. In vivo video rate optical coherence tomography. Optics Express [online] 3, 219–229 (1998).

    CAS  PubMed  Google Scholar 

  78. Bouma, B. et al. High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2/O3 laser source. Optics Lett. 20, 1486–1488 (1995).

    CAS  Google Scholar 

  79. Bouma, B.E., Tearney, G.J., Bilinsky, I.P., Golubovic, B. & Fujimoto, J.G. Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. Optics Lett. 21, 1839–1841 (1996).

    CAS  Google Scholar 

  80. Boppart, S.A. et al. In vivo cellular optical coherence tomography imaging. Nat. Med. 4, 861–865 (1998).

    CAS  PubMed  Google Scholar 

  81. Drexler, W. et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7, 502–507 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Drexler, W. et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch. Ophthalmol. 121, 695–706 (2003).

    PubMed  Google Scholar 

  83. Aguirre, A.D., Hsiung, P., Ko, T.H., Hartl, I. & Fujimoto, J.G. High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Optics Lett. 2064–2066 28 (2003).

    CAS  Google Scholar 

  84. Morgner, U. et al. Spectroscopic optical coherence tomography. Optics Lett. 25, 111–113 (2000).

    CAS  Google Scholar 

  85. Schmitt, J.M., Xiang, S.H. & Yung, K.M. Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A 15, 2288–2296 (1998).

    Google Scholar 

  86. Faber, D.L., Mik, E.G., Aalders, M.C.G. & van Leeuwen, T.G. Light absorption of (oxy)hemoglobin assessed by spectroscopic optical coherence tomography. Optics Lett. 28, 1436–1438 (2003).

    CAS  Google Scholar 

  87. De Boer, J.F., Milner, T.E., van Gemert, M.J.C. & Nelson, J.S. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Lett. 22, 934–936 (1997).

    CAS  Google Scholar 

  88. de Boer, J.F. & Milner, T.E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Optics 7, 359–371 (2002).

    Google Scholar 

  89. Maheswari, R.U., Takaoka, H., Kadono, H., Homma, R. & Tanifuji, M. Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo. J. Neurosci. Methods 124, 83–92 (2003).

    PubMed  Google Scholar 

  90. Herrmann, J.M. et al. High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography. J. Rheumatol. 26, 627–635 (1999).

    CAS  PubMed  Google Scholar 

  91. de Boer, J.F., Srinivas, S.M., Malekafzali, A., Chen, Z. & Nelson, J.S. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Optics Express [online] 3, 212–218 (1998).

    CAS  PubMed  Google Scholar 

  92. Cense, B., Chen, T.C., Hyle Park, B., Pierce, M.C. & de Boer, J.F. In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography. Optics Lett. 27, 1610–1612 (2002).

    Google Scholar 

  93. Izatt, J.A., Kulkarni, M.D., Yazdanfar, S., Barton, J.K. & Welch, A.J. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Optics Lett. 22, 1439–1441 (1997).

    CAS  Google Scholar 

  94. Westphal, V., Yazdanfar, S., Rollins, A.M. & Izatt, J.A. Real-time, high velocity-resolution color Doppler optical coherence tomography. Optics Lett. 27, 34–36 (2002).

    Google Scholar 

  95. Wong, R.C. et al. Visualization of subsurface blood vessels by color Doppler optical coherence tomography in rats: before and after hemostatic therapy. Gastrointest. Endosc. 55, 88–95 (2002).

    PubMed  Google Scholar 

  96. Yazdanfar, S., Rollins, A.M. & Izatt, J.A. In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch. Ophthalmol. 121, 235–239 (2003).

    PubMed  Google Scholar 

  97. Chen, Z., Milner, T.E., Dave, D. & Nelson, J.S. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Optics Lett. 22, 64–66 (1997).

    CAS  Google Scholar 

  98. Zhao, Y. et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics Lett. 25, 114–116 (2000).

    CAS  Google Scholar 

  99. Ding, Z., Zhao, Y., Ren, H., Nelson, J.S. & Chen, Z. Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Optics Express [online] 10, 236–245 (2002).

    PubMed  Google Scholar 

  100. Ren, H. et al. Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin. Optics Lett. 27, 1702–1704 (2002).

    Google Scholar 

Download references

Acknowledgements

The contributions of A. Aguirre, S. Boppart, B. Bouma, S. Bourquin, M. Brezinski, W. Drexler, J. Duker, C. Chudoba, I. Hartl, P. Herz, P. Hsiung, T. Ko, X. Li, H. Mashimo, C. Pitris, J. Schuman, G. Tearney, J. Van Dam and J. Wei are gratefully acknowledged. We thank E. Grube of the Heart Center Siegborg, LightLab Imaging, and J. Izatt of Duke University for granting permission to present the images shown in this paper. This research is supported in part by the US National Institutes of Health, contracts NIH-9-R01-CA75289-05 and NIH-9-R01-EY11289-16; the Medical Free Electron Laser Program, contract F49620-01-1-0186; the Air Force Office of Scientific Research, contract F49620-98-01-0084; the US Army Medical Research Material Command, contract DAMD 17-01-1-156; the National Science Foundation, contracts ECS-0119452 and BES-0119494; the Poduska Family Foundation Fund; and the philanthropy of G. Andlinger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G Fujimoto.

Ethics declarations

Competing interests

J.G.F.'s research group receives equipment research support from Carl Zeiss Meditec and LightLab Imaging. His institution, the Massachusetts Institute of Technology, has licensed intellectual property on optical coherence tomography, for which he receives royalties.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, J. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21, 1361–1367 (2003). https://doi.org/10.1038/nbt892

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing