Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational discovery of gene modules and regulatory networks


We describe an algorithm for discovering regulatory networks of gene modules, GRAM (Genetic Regulatory Modules), that combines information from genome-wide location and expression data sets. A gene module is defined as a set of coexpressed genes to which the same set of transcription factors binds. Unlike previous approaches1,2,3,4,5 that relied primarily on functional information from expression data, the GRAM algorithm explicitly links genes to the factors that regulate them by incorporating DNA binding data, which provide direct physical evidence of regulatory interactions. We use the GRAM algorithm to describe a genome-wide regulatory network in Saccharomyces cerevisiae using binding information for 106 transcription factors profiled in rich medium conditions data* from over 500 expression experiments. We also present a genome-wide location analysis data set for regulators in yeast cells treated with rapamycin, and use the GRAM algorithm to provide biological insights into this regulatory network.

*Note: In the version of this article initially published online, the word "and" was omitted from the fourth sentence of the abstract, altering the meaning. The sentence should read: "We use the GRAM algorithm to describe a genome-wide regulatory network in Saccharomyces cerevisiae using binding information for 106 transcription factors profiled in rich medium conditions and data from over 500 expression experiments." This mistake has been corrected for the HTML and print versions of the article.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rich medium gene modules network.
Figure 2: The GRAM algorithm integrates genome-wide binding and expression data and improves on either data source alone.
Figure 3: Motif enrichment.
Figure 4: Rapamycin gene modules network.


  1. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  2. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166–176 (2003).

    Article  CAS  Google Scholar 

  3. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370–377 (2002).

    Article  CAS  Google Scholar 

  4. Pilpel, Y., Sudarsanam, P. & Church, G.M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet. 29, 153–159 (2001).

    Article  CAS  Google Scholar 

  5. Berman, B.P. et al. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc. Natl. Acad. Sci. USA 99, 757–762 (2002).

    Article  CAS  Google Scholar 

  6. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  7. Mewes, H.W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34 (2002).

    Article  CAS  Google Scholar 

  8. Holland, M.J., Yokoi, T., Holland, J.P., Myambo, K. & Innis, M.A. The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol. Cell Biol. 7, 813–820 (1987).

    Article  CAS  Google Scholar 

  9. Baker, H.V. Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Mol. Cell Biol. 6, 3774–3784 (1986).

    Article  CAS  Google Scholar 

  10. Forsburg, S.L. & Guarente, L. Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3, 1166–1178 (1989).

    Article  CAS  Google Scholar 

  11. Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003).

    Article  CAS  Google Scholar 

  12. Jacinto, E. & Hall, M.N. Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4, 117–126 (2003).

    Article  CAS  Google Scholar 

  13. Crespo, J.L. & Hall, M.N. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 66, 579–591 (2002).

    Article  CAS  Google Scholar 

  14. Raught, B., Gingras, A.C. & Sonenberg, N. The target of rapamycin (TOR) proteins. Proc. Natl. Acad. Sci. USA 98, 7037–7044 (2001).

    Article  CAS  Google Scholar 

  15. Hardwick, J.S., Kuruvilla, F.G., Tong, J.K., Shamji, A.F. & Schreiber, S.L. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA 96, 14866–14870 (1999).

    Article  CAS  Google Scholar 

  16. Shamji, A.F., Kuruvilla, F.G. & Schreiber, S.L. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 10, 1574–1581 (2000).

    Article  CAS  Google Scholar 

  17. Cardenas, M.E., Cutler, N.S., Lorenz, M.C., Di Como, C.J. & Heitman, J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13, 3271–3279 (1999).

    Article  CAS  Google Scholar 

  18. Hasan, R. et al. The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol. Microbiol. 45, 233–241 (2002).

    Article  CAS  Google Scholar 

  19. Rep, M., Krantz, M., Thevelein, J.M. & Hohmann, S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275, 8290–8300 (2000).

    Article  CAS  Google Scholar 

  20. Boy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H. & Jacquet, M. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J. Bacteriol. 180, 1044–1052 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Martinez-Pastor, M.T. et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15, 2227–2235 (1996).

    Article  CAS  Google Scholar 

  22. Schuller, H.J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43, 139–160 (2003).

    PubMed  Google Scholar 

  23. Crespo, J.L., Powers, T., Fowler, B. & Hall, M.N. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc. Natl. Acad. Sci. USA 99, 6784–6789 (2002).

    Article  CAS  Google Scholar 

  24. Komeili, A., Wedaman, K.P., O'Shea, E.K. & Powers, T. Mechanism of metabolic control: target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J. Cell Biol. 151, 863–878 (2000).

    Article  CAS  Google Scholar 

  25. Liao, X. & Butow, R.A. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72, 61–71 (1993).

    Article  CAS  Google Scholar 

  26. Pinkham, J.L. & Guarente, L. Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol. Cell Biol. 5, 3410–3416 (1985).

    Article  CAS  Google Scholar 

  27. Dang, V.D., Bohn, C., Bolotin-Fukuhara, M. & Daignan-Fornier, B. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J. Bacteriol. 178, 1842–1849 (1996).

    Article  CAS  Google Scholar 

  28. Dang, V.D., Valens, M., Bolotin-Fukuhara, M. & Daignan-Fornier, B. Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: differential regulation by the CCAAT-box-binding factor. Mol. Microbiol. 22, 681–692 (1996).

    Article  CAS  Google Scholar 

  29. Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).

    Article  CAS  Google Scholar 

  30. Coffman, J.A., Rai, R., Cunningham, T., Svetlov, V. & Cooper, T.G. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 847–858 (1996).

    Article  CAS  Google Scholar 

Download references


Z.B-J. is supported by the Program in Mathematics and Molecular Biology at Florida State University through the Burroughs Wellcome Fund Interfaces Program. G.G. is supported by a National Defense Engineering and Science graduate fellowship. This work was partially funded by a US National Institutes of Health grant.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David K Gifford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bar-Joseph, Z., Gerber, G., Lee, T. et al. Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21, 1337–1342 (2003).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing