Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models

Abstract

Oncolytic replication-selective adenoviruses constitute a rapidly growing therapeutic platform for cancer. However, the role of the host immune response and the E3 immunoregulatory genes of the human adenovirus were unknown until now. We identified four mouse carcinoma lines of variable permissivity for adenoviral gene expression, cytopathic effects and/or burst size. To determine E3 gene effects in immunocompetent tumor-bearing hosts, we injected tumors with one of three adenoviruses: Ad5 (E3 wild type), dl309 (del. E3 10.4/14.5, 14.7 kDa) or dl704 (del. E3 gp19 kDa). Compared with Ad5 and dl704, dl309 was cleared much more rapidly and/or its activity was lower in all four models. Intratumoral injection with dl309 resulted in markedly greater macrophage infiltration and expression of both tumor necrosis factor and interferon-γ. Adenovirus replication, CD8+ lymphocyte infiltration and efficacy were similar upon intratumoral injection with either dl704 or Ad5. E3-dependent differences were not evident in athymic mice. These findings have important implications for the design of oncolytic adenoviruses and may explain the rapid clearance of E3-10.4/14.5,14.7-deleted adenoviruses in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication of wild-type and E3-mutant adenovirus in murine and human cancer cell lines in vitro.
Figure 2: Adenovirus gene expression and DNA replication after injection with Ad5, nonreplicating control adenovirus, dl309 or dl704 in immunocompetent mice.
Figure 3: Adenovirus infectious unit titers over time in murine tumors and liver.
Figure 4: Adenovirus gene expression and DNA replication over time in murine tumors after injection with Ad5, dl309 or dl704 in immunocompetent versus athymic mice.
Figure 5: Acute intratumoral inflammatory response and CD8+ lymphocyte infiltration after injection with Ad5, dl309, dl704 or control adenovirus in immunocompetent murine tumor models.
Figure 6: Relative antitumoral efficacy after treatment with Ad5, dl309, dl704 or control adenovirus in immunocompetent or athymic (nu/nu) mice.

Similar content being viewed by others

References

  1. Kirn, D., Martuza, R.L. & Zwiebel, J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med. 7, 781–787 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Kirn, D. Replication-selective micro-organisms: fighting cancer with targeted germ warfare. J. Clin. Invest. 105, 836–838 (2000).

    Article  Google Scholar 

  3. Kirn, D. Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene 19, 6660–6668 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bischoff, J.R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells [see comments]. Science 274, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents [see comments]. Nat. Med. 3, 639–645 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, D., Sakamoto, G. & Henderson, D.R. Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res. 59, 1498–1504 (1999).

    CAS  PubMed  Google Scholar 

  7. Yu, D., Chen, Y., Seng, M., Dilley, J. & Henderson, D.R. The addition of adenovirus region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res. 59, 4200–4203 (1999).

    CAS  PubMed  Google Scholar 

  8. Heise, C. et al. An adenovirus E1A mutant that demonstrates potent and selective antitumoral efficacy. Nat. Med. 6, 1134–1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Freytag, S.O., Rogulski, K.R., Paielli, D.L., Gilbert, J.D. & Kim, J.H. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy [see comments]. Hum. Gene Ther. 9, 1323–1333 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Fueyo, J. et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19, 2–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Kurihara, T., Brough, D.E., Kovesdi, I. & Kufe, D.W. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J. Clin. Invest. 106, 763–771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson, L. et al. Selectively-replicating adenovirus targeting deregulated E2F activity are potent antitumor agents. Cancer Cell 1, 325–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Jakubczak, J. et al. An oncolytic adenovirus selective for retinoblastoma protein-defective tumors. Cancer Res. 63, 1490–1499 (2003).

    CAS  PubMed  Google Scholar 

  14. Doronin, K. et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J. Virol. 74, 6147–6155 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramachandra, M. et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat. Biotechnol. 19, 1035–1041 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kirn, D. Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther. 8, 89–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. DeWeese, T. et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61, 7464–7472 (2001).

    CAS  PubMed  Google Scholar 

  18. Nemunaitis, J. et al. Selective replication and oncolysis in p53 mutant tumors with Onyx-015, an E1B-55kDa gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359–6366 (2000).

    CAS  PubMed  Google Scholar 

  19. Nemunaitis, J. et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol. 19, 289–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Vasey, P., Shulman, L., Gore, M., Kirn, D. & Kaye, S. Phase I trial of intraperitoneal Onyx-015 adenovirus in patients with recurrent ovarian carcinoma. J. Clin. Oncol. 20, 1562–1569 (2002).

    CAS  PubMed  Google Scholar 

  21. Wold, W.S., Hermiston, T.W. & Tollefson, A.E. Adenovirus proteins that subvert host defenses. Trends Microbiol. 2, 437–443 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Sparer, T.E. et al. The role of human adenovirus early region 3 proteins (gp19K, 10.4K, 14.5K, and 14.7K) in a murine pneumonia model. J. Virol. 70, 2431–2439 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997).

    CAS  PubMed  Google Scholar 

  24. Heise, C., Williams, A., Xue, S., Propst, M. & Kirn, D. Intravenous administration of ONYX-015, a selectively-replicating adenovirus, induces antitumoral efficacy. Cancer Res. 59, 2623–2628 (1999).

    CAS  PubMed  Google Scholar 

  25. Heise, C., Williams, A., Olesch, J. & Kirn, D. Efficacy of a replication-competent adenovirus (ONYX-015) following intratumoral injection: intratumoral spread and distribution effects. Cancer Gene Ther. 6, 499–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Ginsberg, H.S. et al. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc. Natl. Acad. Sci. USA 88, 1651–1655 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wold, W.S., Tollefson, A.E. & Hermiston, T.W. E3 transcription unit of adenovirus. Curr. Top. Microbiol. Immunol. 199, 237–274 (1995).

    CAS  PubMed  Google Scholar 

  28. Dimitrov, T. et al. Adenovirus E3-10.4K/14.5K protein complex inhibits tumor necrosis factor-induced translocation of cytosolic phospholipase A2 to membranes. J. Virol. 71, 2830–2837 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hermiston, T.W., Tripp, R.A., Sparer, T., Gooding, L.R. & Wold, W.S. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes. J. Virol. 67, 5289–5298 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lichtenstein, D.L., Krajcsi, P., Esteban, D.J., Tollefson, A.E. & Wold, W.S. Adenovirus RIDβ subunit contains a tyrosine residue that is critical for RID-mediated receptor internalization and inhibition of Fas- and TRAIL-induced apoptosis. J. Virol. 76, 11329–11342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gooding, L.R. Regulation of TNF-mediated cell death and inflammation by human adenoviruses. Infect. Agents Dis. 3, 106–115 (1994).

    CAS  PubMed  Google Scholar 

  32. Shisler, J., Duerksen, H.P., Hermiston, T.M., Wold, W.S. & Gooding, L.R. Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J. Virol. 70, 68–77 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Duncan, S. et al. Infection of mouse liver by human adenovirus type 5. J. Gen. Virol. 40, 45–61 (1978).

    Article  CAS  PubMed  Google Scholar 

  34. Ganly, I., Mauntner, V. & Balmain, A. Productive replication of human adenoviruses in mouse epidermal cells. J. Virol. 74, 2895–2899 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hayder, H. et al. Adenovirus-induced liver pathology is mediated through TNF receptors I and II but is independent of TNF or lymphotoxin. J. Immunol. 163, 1516–1520 (1999).

    CAS  PubMed  Google Scholar 

  36. Efrat, S. et al. Adenovirus early region 3(E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 50, 980–984 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Tufariello, J., Cho, S. & Horwitz, M.S. The adenovirus E3 14.7-kilodalton protein which inhibits cytolysis by tumor necrosis factor increases the virulence of vaccinia virus in a murine pneumonia model. J. Virol. 68, 453–462 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schowalter, D.B., Tubb, J.C., Liu, M., Wilson, C.B. & Kay, M.A. Heterologous expression of adenovirus E3-gp19K in an E1a-deleted adenovirus vector inhibits MHC I expression in vitro, but does not prolong transgene expression in vivo. Gene Ther. 4, 351–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Z.X., Govindarajan, S., Okamoto, S. & Dennert, G. Fas- and tumor necrosis factor receptor 1-dependent but not perforin-dependent pathways cause injury in livers infected with an adenovirus construct in mice. Hepatology 31, 665–673 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Krajcsi, P. et al. The adenovirus E3-14.7K protein and the E3-10.4K/14.5K complex of proteins, which independently inhibit tumor necrosis factor (TNF)-induced apoptosis, also independently inhibit TNF-induced release of arachidonic acid. J. Virol. 70, 4904–4913 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gooding, L.R. et al. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J. Virol. 65, 4114–4123 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hallden, G. et al. Novel immunocompetent models for assessment of oncolytic adenovirus. Molecular Therapy 8, 412–424 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Duncan, S. et al. Infection of mouse liver by human adenovirus type 5. J. Gen. Virol. 40, 45–61 (1978).

    Article  CAS  PubMed  Google Scholar 

  44. Wold, W.S., Hermiston, T.W. & Tollefson, A.E. Adenovirus proteins that subvert host defenses. Trends Microbiol. 2, 437–443 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Hayder, H. et al. Adenovirus-induced liver pathology is mediated through TNF receptors I and II but is independent of TNF or lymphotoxin. J. Immunol. 163, 1516–1520 (1999).

    CAS  PubMed  Google Scholar 

  46. Krajcsi, P. et al. The adenovirus E3-14.7K protein and the E3-10.4K/14.5K complex of proteins, which independently inhibit tumor necrosis factor (TNF)-induced apoptosis, also independently inhibit TNF-induced release of arachidonic acid. J. Virol. 70, 4904–4913 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hermiston, T.W., Tripp, R.A., Sparer, T., Gooding, L.R. & Wold, W.S. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes. J. Virol. 67, 5289–5298 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reid, T. et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther. 8, 1618–1626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Day, D.B., Zachariades, N.A. & Gooding, L.R. Cytolysis of adenovirus-infected murine fibroblasts by IFN-γ-primed macrophages is TNF- and contact-dependent. Cell Immunol. 157, 223–238 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Hermiston, T. Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer. J. Clin. Invest. 105, 1169–1175 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khuri, F. et al. A controlled trial of Onyx-015, an E1B gene-deleted adenovirus, in combination with chemotherapy in patients with recurrent head and neck cancer. Nat. Med. 6, 879–885 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Nagtegaal, I. et al. Local and distant recurrences in rectal cancer patients predicted by the immune response; a histopathological and immunohistochemical study. BMC Cancer 1, 7–11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK for support of the Molecular Oncology Unit, Hammersmith Hospital (London, UK), Russell Foxall for production and titration of viruses and Lynda Hawkins for laboratory personnel training and support. We also would like to thank Suzanne Forry-Schaudies, David Ennist and Paul Hallenbeck for helpful insights and reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kirn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Hallden, G., Hill, R. et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol 21, 1328–1335 (2003). https://doi.org/10.1038/nbt887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing