Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The 'right' size in nanobiotechnology

Abstract

The biological and physical sciences share a common interest in small structures (the definition of 'small' depends on the application, but can range from 1 nm to 1 mm). A vigorous trade across the borders of these areas of science is developing around new materials and tools (largely from the physical sciences) and new phenomena (largely from the biological sciences). The physical sciences offer tools for synthesis and fabrication of devices for measuring the characteristics of cells and sub-cellular components, and of materials useful in cell and molecular biology; biology offers a window into the most sophisticated collection of functional nanostructures that exists.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Sizes of representative 'small' objects.
Figure 2: Selective cell release and spreading54.
Figure 3: Generation of gradients in a microfluidic device67.

References

  1. Drexler, K.E. Engines of Creation (Anchor Press/Doubleday, Garden City, New York, USA, 1986).

    Google Scholar 

  2. Stephenson, N. The Diamond Age (Bantam, New York, 1995).

    Google Scholar 

  3. Joy, B. Why the future doesn't need us. Wired 8(4), 1–11 (April 2000). http://www.wired.com/wired/archive/8.04/joy_pr.html

    Google Scholar 

  4. Bohr, M.T. Nanotechnology goals and challenges for electronic applications. IEEE Trans. Nanotechnol. 1, 56–62 (2002).

    Article  Google Scholar 

  5. Wu, J.-J., Wong, T.-C. & Yu, C.-C. Growth and characterization of well-aligned nc-Si/SiOx composite nanowires. Adv. Mater. 14, 1643–1646 (2002).

    Article  CAS  Google Scholar 

  6. Cahen, D. & Hodes, G. Molecules and electronic materials. Adv. Mater. 14, 789–798 (2002).

    Article  CAS  Google Scholar 

  7. Lieberman, M. et al. Quantum-dot cellular automata at a molecular scale. Ann. N.Y. Acad. Sci. 960, 225–239 (2002).

    Article  CAS  Google Scholar 

  8. Vettiger, P. et al. The 'Millipede'—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002).

    Article  Google Scholar 

  9. Vettiger, P. & Binnig, G. The nanodrive project. Sci. Am. 288, 46–53 (2003).

    Article  PubMed  Google Scholar 

  10. Ouyang, M., Huang, J.L. & Lieber, C.M. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Annu. Rev. Phys. Chem. 53, 201–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wagner, R.S. & Ellis, W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  12. Goia, D.V. & Matijevic, E. Preparation of monodispersed metal particles. New J. Chem. 22, 1203–15 (1998).

    Article  CAS  Google Scholar 

  13. Gudiksen, M.S., Wang, J. & Lieber, C.M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B. 105, 4062–4064 (2001).

    Article  CAS  Google Scholar 

  14. Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Comm. issue 8, 927–934 (2003).

  15. Bates, A.K. et al. Review of technology for 157-nm lithography. IBM J. Res. Dev. 45, 605–614 (2001).

    Article  CAS  Google Scholar 

  16. Hafner, J.H., Cheung, C.-L., Woolley, A.T. & Lieber, C.M. Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Bio. 77, 73–110 (2001).

    Article  CAS  Google Scholar 

  17. Scheuring, S. et al. Single proteins observed by atomic force microscopy. Single Mol. 2, 59–67 (2001).

    Article  CAS  Google Scholar 

  18. Eschenmoser, A. & Kisakurek, M.V. Chemistry and the origin of life. Helv. Chim. Acta 79, 1249–1259 (1996).

    Article  Google Scholar 

  19. Gierer, A. Theoretical approaches to holistic biological features: pattern formation, neural networks and the brain-mind relation. J. Biosci. 27, 195–205 (2002).

    Article  PubMed  Google Scholar 

  20. Deutsch, J., Desai, T.A., Motlagh, D. & Russell, B. Microfabricated in vitro cell culture systems for investigating cellular interactions. Proc. Soc. Photooptical Instrum. Eng. 3912, 105–113 (2000).

    CAS  Google Scholar 

  21. Kanehisa, M. Prediction of higher order functional networks from genomic data. Pharmacogenomics 2, 373–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Alberts, B. et al. (eds.). Molecular Biology of the Cell (Garland Science, Taylor & Francis Group, New York, 2002).

    Google Scholar 

  23. Reif, F. Fundamentals of Statistical and Thermal Physics (McGraw-Hill, Boston, MA, USA, 1965).

    Google Scholar 

  24. Xue, Q.F. & Yeung, E.S. Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Craig, D.B., Arriaga, E.A., Wong, J.C.Y., Lu, H. & Dovichi, N.J. Studies on single alkaline phosphatase molecules: reaction rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation—the death of an enzyme. J. Am. Chem. Soc. 118, 5245–5253 (1996).

    Article  CAS  Google Scholar 

  26. Zhuang, X. et al. A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. van Oijen, A.M. et al. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Murray, A.W. Whither genomics? Genome Biol. 1, 003.1 (2000). http://genomebiology.com/2000/1/1/comment/003.1

    Article  Google Scholar 

  29. Yanai, I. & DeLisi, C. The society of genes: networks of functional links between genes from comparative genomics. Genome Biol. 3, 0064.1 (2002). http://genomebiology.com/2002/3/11/research/0064.1.

    Google Scholar 

  30. Nie, S.M. & Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Nie, S.M. & Zare, R.N. Optical detection of single molecules. Annu. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Bahlmann, K., Jacobs, S. & Hell, S.W. 4Pi-confocal microscopy of live cells. Ultramicroscopy 87, 155–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Subramaniam, V., Kirsch, A.K. & Jovin, T.M. Cell biological applications of scanning near-field optical microscopy (SNOM). Cell. Mol. Biol. 44, 689–700 (1998).

    CAS  PubMed  Google Scholar 

  34. Hartschuh, A., Sanchez, E.J., Xie, X.S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).

    Article  CAS  Google Scholar 

  35. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Sakmann, B. & Neher, E. (eds.) Single-Channel Recording (Plenum Press, New York, 1995).

    Book  Google Scholar 

  37. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618–624 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8-Angstrom resolution of F1-ATPase from bovine heart-mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Simpson, A.A. et al. Structure of the bacteriophage φ29 DNA packaging motor. Nature 408, 745–750 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Noji, N., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F-1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Drexler, K.E. Nanosystems: Molecular Machinery, Manufacturing, and Computation (Wiley, New York, 1992).

    Google Scholar 

  48. Soong, R.K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Sambongi, Y. et al. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286, 1722–1724 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Stock, D., Leslie, A.G.W. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Mrksich, M. & Whitesides, G.M. Patterning self-assembled monolayers using microcontact printing—a new technology for biosensors. Trends Biotechnol. 13, 228–235 (1995).

    Article  CAS  Google Scholar 

  52. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Michel, B. et al. Printing meets lithography: soft approaches to high-resolution patterning. Chimia 56, 527–542 (2003).

    Article  CAS  Google Scholar 

  54. Jiang, X.Y., Ferrigno, R., Mrksich, M. & Whitesides, G.M. Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 125, 2366–2367 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Svoboda, K. & Block, S.M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Engel, A., Gaub, H.E. & Muller, D.J. Atomic force microscopy: a forceful way with single molecules. Curr. Biol. 9, R133–R136 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Bustamante, C., Macosko, J.C. & Wuite, G.J.L. Grabbing the cat by the tail: manipulating molecules one by one. Nat. Rev. Mol. Cell Biol. 1, 130–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Knight, A.E., Veigel, C., Chambers, C. & Molloy, J.E. Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog. Biophys. Mol. Biol. 77, 45–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Block, S.M., Asbury, C.L., Shaevitz, J.W. & Lang, M.J. Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl. Acad. Sci. USA. 100, 2351–2356 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Evans, E. Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Assi, F., Jenks, R., Yang, J., Love, J.C. & Prentiss, M. Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers. J. Appl. Phys. 92, 5584–5586 (2002).

    Article  CAS  Google Scholar 

  63. Danilowicz, C. et al. DNA unzipped under a constant force exhibits multiple metastable intermediates. Proc. Natl. Acad. Sci. U.S.A. 100, 1694–1699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Delamarche, E. et al. Microfluidic networks for chemical patterning of substrates: design and application to bioassays. J. Am. Chem. Soc. 120, 500–508 (1998).

    Article  CAS  Google Scholar 

  65. Whitesides, G.M. & Stroock, A.D. Flexible methods for microfluidics. Phys. Today 54, 42–48 (2001).

    Article  CAS  Google Scholar 

  66. Hatch, A. et al. A rapid diffusion immunoassay in a T-sensor. Nature Biotechnol. 19, 461–465 (2001).

    Article  CAS  Google Scholar 

  67. Dertinger, S.K.W., Chiu, D.T., Jeon, N.L. & Whitesides, G.M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73, 1240–1246 (2001).

    Article  CAS  Google Scholar 

  68. Dertinger, S.K.W., Jiang, X.Y., Li, Z.Y., Murthy, V.N. & Whitesides, G.M. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. USA 99, 12542–12547 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Hong, J.W. & Quake, S.R. Integrated nanoliter systems. Nat. Biotechnol. 21, 1179–1183 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Han, J. & Craighead, H.G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Cao, H., Tegenfeldt, J.O., Austin, R.H. & Chou, S.Y. Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl. Phys. Lett. 81, 3058–3060 (2002).

    Article  CAS  Google Scholar 

  72. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Mayer, M., Kriebel, J.K., Tosteson, M.T. & Whitesides, G.M. Microfabricated Teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys. J. 85, 2684–2695 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Graff, A., Winterhalter, M. & Meier, W. Nanoreactors from polymer-stabilized liposomes. Langmuir 17, 919–923 (2001).

    Article  CAS  Google Scholar 

  75. Karlsson, M. et al. Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proc. Natl. Acad. Sci. USA 99, 11573–11578 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Martin, C.R. & Mitchell, D.T. Nanomaterials in analytical chemistry. Anal. Chem. 70, 322A–327A (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Harisinghani, M.G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Eng. J. Med. 348, 2491–2499 (2003).

    Article  PubMed  Google Scholar 

  78. Hulteen, J.C. & Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075–1087 (1997).

    Article  CAS  Google Scholar 

  79. Murray, C.B., Kagan, C.R. & Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  80. Taton, T.A. Nanostructures as tailored biological probes. Trends Biotechnol. 20, 277–279 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Alivisatos, A.P. Semiconductor clusters, nanocyrstals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  82. Liang, W., Shores, M.P., Bockrath, M., Long, J.R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Black, C.T., Murray, C.B., Sandstrom, R.L. & Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–1134 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Love, J.C., Gates, B.D., Wolfe, D.B., Paul, K.E. & Whitesides, G.M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2, 891–894 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Defense Advanced Research Projects Agency, National Science Foundation (ECS-0004030) and National Institutes of Health (GM-65364).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whitesides, G. The 'right' size in nanobiotechnology. Nat Biotechnol 21, 1161–1165 (2003). https://doi.org/10.1038/nbt872

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing