Abstract
The biological and physical sciences share a common interest in small structures (the definition of 'small' depends on the application, but can range from 1 nm to 1 mm). A vigorous trade across the borders of these areas of science is developing around new materials and tools (largely from the physical sciences) and new phenomena (largely from the biological sciences). The physical sciences offer tools for synthesis and fabrication of devices for measuring the characteristics of cells and sub-cellular components, and of materials useful in cell and molecular biology; biology offers a window into the most sophisticated collection of functional nanostructures that exists.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Drexler, K.E. Engines of Creation (Anchor Press/Doubleday, Garden City, New York, USA, 1986).
Stephenson, N. The Diamond Age (Bantam, New York, 1995).
Joy, B. Why the future doesn't need us. Wired 8(4), 1–11 (April 2000). http://www.wired.com/wired/archive/8.04/joy_pr.html
Bohr, M.T. Nanotechnology goals and challenges for electronic applications. IEEE Trans. Nanotechnol. 1, 56–62 (2002).
Wu, J.-J., Wong, T.-C. & Yu, C.-C. Growth and characterization of well-aligned nc-Si/SiOx composite nanowires. Adv. Mater. 14, 1643–1646 (2002).
Cahen, D. & Hodes, G. Molecules and electronic materials. Adv. Mater. 14, 789–798 (2002).
Lieberman, M. et al. Quantum-dot cellular automata at a molecular scale. Ann. N.Y. Acad. Sci. 960, 225–239 (2002).
Vettiger, P. et al. The 'Millipede'—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002).
Vettiger, P. & Binnig, G. The nanodrive project. Sci. Am. 288, 46–53 (2003).
Ouyang, M., Huang, J.L. & Lieber, C.M. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Annu. Rev. Phys. Chem. 53, 201–220 (2002).
Wagner, R.S. & Ellis, W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).
Goia, D.V. & Matijevic, E. Preparation of monodispersed metal particles. New J. Chem. 22, 1203–15 (1998).
Gudiksen, M.S., Wang, J. & Lieber, C.M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B. 105, 4062–4064 (2001).
Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Comm. issue 8, 927–934 (2003).
Bates, A.K. et al. Review of technology for 157-nm lithography. IBM J. Res. Dev. 45, 605–614 (2001).
Hafner, J.H., Cheung, C.-L., Woolley, A.T. & Lieber, C.M. Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Bio. 77, 73–110 (2001).
Scheuring, S. et al. Single proteins observed by atomic force microscopy. Single Mol. 2, 59–67 (2001).
Eschenmoser, A. & Kisakurek, M.V. Chemistry and the origin of life. Helv. Chim. Acta 79, 1249–1259 (1996).
Gierer, A. Theoretical approaches to holistic biological features: pattern formation, neural networks and the brain-mind relation. J. Biosci. 27, 195–205 (2002).
Deutsch, J., Desai, T.A., Motlagh, D. & Russell, B. Microfabricated in vitro cell culture systems for investigating cellular interactions. Proc. Soc. Photooptical Instrum. Eng. 3912, 105–113 (2000).
Kanehisa, M. Prediction of higher order functional networks from genomic data. Pharmacogenomics 2, 373–385 (2001).
Alberts, B. et al. (eds.). Molecular Biology of the Cell (Garland Science, Taylor & Francis Group, New York, 2002).
Reif, F. Fundamentals of Statistical and Thermal Physics (McGraw-Hill, Boston, MA, USA, 1965).
Xue, Q.F. & Yeung, E.S. Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).
Craig, D.B., Arriaga, E.A., Wong, J.C.Y., Lu, H. & Dovichi, N.J. Studies on single alkaline phosphatase molecules: reaction rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation—the death of an enzyme. J. Am. Chem. Soc. 118, 5245–5253 (1996).
Zhuang, X. et al. A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).
van Oijen, A.M. et al. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003).
Murray, A.W. Whither genomics? Genome Biol. 1, 003.1 (2000). http://genomebiology.com/2000/1/1/comment/003.1
Yanai, I. & DeLisi, C. The society of genes: networks of functional links between genes from comparative genomics. Genome Biol. 3, 0064.1 (2002). http://genomebiology.com/2002/3/11/research/0064.1.
Nie, S.M. & Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).
Nie, S.M. & Zare, R.N. Optical detection of single molecules. Annu. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997).
Bahlmann, K., Jacobs, S. & Hell, S.W. 4Pi-confocal microscopy of live cells. Ultramicroscopy 87, 155–164 (2001).
Subramaniam, V., Kirsch, A.K. & Jovin, T.M. Cell biological applications of scanning near-field optical microscopy (SNOM). Cell. Mol. Biol. 44, 689–700 (1998).
Hartschuh, A., Sanchez, E.J., Xie, X.S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).
Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168–172 (2000).
Sakmann, B. & Neher, E. (eds.) Single-Channel Recording (Plenum Press, New York, 1995).
Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618–624 (1985).
Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8-Angstrom resolution of F1-ATPase from bovine heart-mitochondria. Nature 370, 621–628 (1994).
Simpson, A.A. et al. Structure of the bacteriophage φ29 DNA packaging motor. Nature 408, 745–750 (2000).
Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).
Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).
Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).
Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).
Noji, N., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F-1-ATPase. Nature 386, 299–302 (1997).
Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).
Drexler, K.E. Nanosystems: Molecular Machinery, Manufacturing, and Computation (Wiley, New York, 1992).
Soong, R.K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).
Sambongi, Y. et al. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286, 1722–1724 (1999).
Stock, D., Leslie, A.G.W. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).
Mrksich, M. & Whitesides, G.M. Patterning self-assembled monolayers using microcontact printing—a new technology for biosensors. Trends Biotechnol. 13, 228–235 (1995).
Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
Michel, B. et al. Printing meets lithography: soft approaches to high-resolution patterning. Chimia 56, 527–542 (2003).
Jiang, X.Y., Ferrigno, R., Mrksich, M. & Whitesides, G.M. Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 125, 2366–2367 (2003).
Svoboda, K. & Block, S.M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
Engel, A., Gaub, H.E. & Muller, D.J. Atomic force microscopy: a forceful way with single molecules. Curr. Biol. 9, R133–R136 (1999).
Bustamante, C., Macosko, J.C. & Wuite, G.J.L. Grabbing the cat by the tail: manipulating molecules one by one. Nat. Rev. Mol. Cell Biol. 1, 130–136 (2000).
Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002).
Knight, A.E., Veigel, C., Chambers, C. & Molloy, J.E. Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog. Biophys. Mol. Biol. 77, 45–72 (2001).
Block, S.M., Asbury, C.L., Shaevitz, J.W. & Lang, M.J. Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl. Acad. Sci. USA. 100, 2351–2356 (2003).
Evans, E. Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).
Assi, F., Jenks, R., Yang, J., Love, J.C. & Prentiss, M. Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers. J. Appl. Phys. 92, 5584–5586 (2002).
Danilowicz, C. et al. DNA unzipped under a constant force exhibits multiple metastable intermediates. Proc. Natl. Acad. Sci. U.S.A. 100, 1694–1699 (2003).
Delamarche, E. et al. Microfluidic networks for chemical patterning of substrates: design and application to bioassays. J. Am. Chem. Soc. 120, 500–508 (1998).
Whitesides, G.M. & Stroock, A.D. Flexible methods for microfluidics. Phys. Today 54, 42–48 (2001).
Hatch, A. et al. A rapid diffusion immunoassay in a T-sensor. Nature Biotechnol. 19, 461–465 (2001).
Dertinger, S.K.W., Chiu, D.T., Jeon, N.L. & Whitesides, G.M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73, 1240–1246 (2001).
Dertinger, S.K.W., Jiang, X.Y., Li, Z.Y., Murthy, V.N. & Whitesides, G.M. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. USA 99, 12542–12547 (2002).
Hong, J.W. & Quake, S.R. Integrated nanoliter systems. Nat. Biotechnol. 21, 1179–1183 (2003).
Han, J. & Craighead, H.G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).
Cao, H., Tegenfeldt, J.O., Austin, R.H. & Chou, S.Y. Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl. Phys. Lett. 81, 3058–3060 (2002).
Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).
Mayer, M., Kriebel, J.K., Tosteson, M.T. & Whitesides, G.M. Microfabricated Teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys. J. 85, 2684–2695 (2003).
Graff, A., Winterhalter, M. & Meier, W. Nanoreactors from polymer-stabilized liposomes. Langmuir 17, 919–923 (2001).
Karlsson, M. et al. Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proc. Natl. Acad. Sci. USA 99, 11573–11578 (2002).
Martin, C.R. & Mitchell, D.T. Nanomaterials in analytical chemistry. Anal. Chem. 70, 322A–327A (1998).
Harisinghani, M.G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Eng. J. Med. 348, 2491–2499 (2003).
Hulteen, J.C. & Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075–1087 (1997).
Murray, C.B., Kagan, C.R. & Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).
Taton, T.A. Nanostructures as tailored biological probes. Trends Biotechnol. 20, 277–279 (2002).
Alivisatos, A.P. Semiconductor clusters, nanocyrstals, and quantum dots. Science 271, 933–937 (1996).
Liang, W., Shores, M.P., Bockrath, M., Long, J.R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).
Black, C.T., Murray, C.B., Sandstrom, R.L. & Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–1134 (2000).
Love, J.C., Gates, B.D., Wolfe, D.B., Paul, K.E. & Whitesides, G.M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2, 891–894 (2002).
Acknowledgements
This work was supported by the US Defense Advanced Research Projects Agency, National Science Foundation (ECS-0004030) and National Institutes of Health (GM-65364).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Whitesides, G. The 'right' size in nanobiotechnology. Nat Biotechnol 21, 1161–1165 (2003). https://doi.org/10.1038/nbt872
Published:
Issue Date:
DOI: https://doi.org/10.1038/nbt872
This article is cited by
-
Nanoparticles Treat Ischemic Stroke by Responding to Stroke Microenvironment
BioNanoScience (2023)
-
Evaluation of the protective effects of berberine and berberine nanoparticle on insulin secretion and oxidative stress induced by carbon nanotubes in isolated mice islets of langerhans: an in vitro study
Environmental Science and Pollution Research (2022)
-
Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery
Nanoscale Research Letters (2021)
-
Intracellular detection and communication of a wireless chip in cell
Scientific Reports (2021)