Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis

Abstract

The diversity of autoimmune responses poses a formidable challenge to the development of antigen-specific tolerizing therapy. We developed 'myelin proteome' microarrays to profile the evolution of autoantibody responses in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS). Increased diversity of autoantibody responses in acute EAE predicted a more severe clinical course. Chronic EAE was associated with previously undescribed extensive intra- and intermolecular epitope spreading of autoreactive B-cell responses. Array analysis of autoantigens targeted in acute EAE was used to guide the choice of autoantigen cDNAs to be incorporated into expression plasmids so as to generate tolerizing vaccines. Tolerizing DNA vaccines encoding a greater number of array-determined myelin targets proved superior in treating established EAE and reduced epitope spreading of autoreactive B-cell responses. Proteomic monitoring of autoantibody responses provides a useful approach to monitor autoimmune disease and to develop and tailor disease- and patient-specific tolerizing DNA vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myelin proteome arrays.
Figure 2: Array validation.
Figure 3: The diversity of autoantibody responses in acute EAE predicts subsequent disease activity.
Figure 4: Extensive intra- and intermolecular spreading of autoreactive B-cell responses, with persistence of reactivity against the inducing encephalitogen, in chronic relapsing EAE.
Figure 5: Tolerizing DNA vaccines reduce autoantibody epitope spreading.

Similar content being viewed by others

References

  1. Milich, D.R., McLachlan, A., Thornton, G.B. & Hughes, J.L. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T-cell site. Nature 329, 547–549 (1987).

    Article  CAS  Google Scholar 

  2. Lehmann, P.V., Forsthuber, T., Miller, A. & Sercarz, E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).

    Article  CAS  Google Scholar 

  3. Yu, M., Johnson, J.M. & Tuohy, V.K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: a basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183, 1777–1788 (1996).

    Article  CAS  Google Scholar 

  4. James, J.A., Gross, T., Scofield, R.H. & Harley, J.B. Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: Sm B/B'-derived PGMRPP and PGIRGP induce spliceosome autoimmunity. J. Exp. Med. 181, 453–461 (1995).

    Article  CAS  Google Scholar 

  5. Tisch, R. & McDevitt, H. Insulin-dependent diabetes mellitus. Cell 85, 291–297 (1996).

    Article  CAS  Google Scholar 

  6. McRae, B.L., Vanderlugt, C.L., Dal Canto, M.C. & Miller, S.D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182, 75–85 (1995).

    Article  CAS  Google Scholar 

  7. Genain, C., Cannella, B., Hauser, S. & Raine, C. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med. 5, 170–175 (1999).

    Article  CAS  Google Scholar 

  8. Genain, C.P. et al. Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057 (1996).

    Article  CAS  Google Scholar 

  9. Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302 (1996).

    Article  CAS  Google Scholar 

  10. Garren, H. et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 15, 15–22 (2001).

    Article  CAS  Google Scholar 

  11. Wekerle, H. Remembering MOG: autoantibody-mediated demyelination in multiple sclerosis? Nat. Med. 5, 153–154 (1999).

    Article  CAS  Google Scholar 

  12. Robinson, H.L., Hunt, L.A. & Webster, R.G. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 11, 957–960 (1993).

    Article  CAS  Google Scholar 

  13. Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993).

    Article  CAS  Google Scholar 

  14. Ruiz, P. et al. Suppressive immunization with DNA encoding a self-protein prevents autoimmune disease: modulation of T cell costimulation. J. Immunol. 162, 3336–3341 (1999).

    CAS  PubMed  Google Scholar 

  15. Ramshaw, I.A. et al. DNA vaccines for the treatment of autoimmune disease. Immunol. Cell Biol. 75, 409–413 (1997).

    Article  CAS  Google Scholar 

  16. Urbanek-Ruiz, I. et al. Immunization with DNA encoding an immunodominant peptide of insulin prevents diabetes in NOD mice. Clin. Immunol. 100, 164–171 (2001).

    Article  CAS  Google Scholar 

  17. Balasa, B. et al. Vaccination with glutamic acid decarboxylase plasmid DNA protects mice from spontaneous autoimmune diabetes and B7/CD28 costimulation circumvents that protection. Clin. Immunol. 99, 241–252 (2001).

    Article  CAS  Google Scholar 

  18. Bot, A. et al. Plasmid vaccination with insulin B chain prevents autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 2950–2955 (2001).

    Article  CAS  Google Scholar 

  19. Robinson, W.H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301 (2002).

    Article  CAS  Google Scholar 

  20. Zamvil, S. et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317, 355–358 (1985).

    Article  CAS  Google Scholar 

  21. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  22. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  23. Noseworthy, J.H., Lucchinetti, C., Rodriguez, M. & Weinshenker, B.G. Multiple sclerosis. N. Engl. J. Med. 343, 938–952 (2000).

    Article  CAS  Google Scholar 

  24. Morris-Downes, M.M. et al. Encephalitogenic and immunogenic potential of myelin-associated glycoprotein (MAG), oligodendrocyte-specific glycoprotein (OSP) and 2',3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in ABH and SJL mice. J. Neuroimmunol. 122, 20–33 (2002).

    Article  CAS  Google Scholar 

  25. Shlomchik, M.J., Craft, J.E. & Mamula, M.J. From T to B and back again: positive feedback in systemic autoimmune disease. Nat. Rev. Immunol. 1, 147–153 (2001).

    Article  CAS  Google Scholar 

  26. Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72, 551–560 (1993).

    Article  CAS  Google Scholar 

  27. Fazekas de St, G. & Webster, R.G. Disquisitions of original antigenic sin. I. Evidence in man. J. Exp. Med. 124, 331–345 (1966).

    Article  Google Scholar 

  28. Klenerman, P. & Zinkernagel, R.M. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 394, 482–485 (1998).

    Article  CAS  Google Scholar 

  29. Tuohy, V.K., Yu, M., Yin, L., Kawczak, J.A. & Kinkel, R.P. Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 189, 1033–1042 (1999).

    Article  CAS  Google Scholar 

  30. Steinman, L. Absence of “original antigenic sin” in autoimmunity provides an unforeseen platform for immune therapy. J. Exp. Med. 189, 1021–1024 (1999).

    Article  CAS  Google Scholar 

  31. Critchfield, J.M. et al. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263, 1139–1143 (1994).

    Article  CAS  Google Scholar 

  32. Brocke, S. et al. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379, 343–346 (1996).

    Article  CAS  Google Scholar 

  33. Boon, L. et al. Prevention of experimental autoimmune encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist monoclonal antibody against human CD40 is associated with altered B cell responses. J. Immunol. 167, 2942–2949 (2001).

    Article  CAS  Google Scholar 

  34. Miller, S.D. et al. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3, 739–745 (1995).

    Article  CAS  Google Scholar 

  35. Tisch, R. et al. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366, 72 (1993).

    Article  CAS  Google Scholar 

  36. Yu, L. et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc. Natl. Acad. Sci. USA 97, 1701–1706 (2000).

    Article  CAS  Google Scholar 

  37. Robinson, W.H., Garren, H., Utz, P.J. & Steinman, L. Millennium Award. Proteomics for the development of DNA tolerizing vaccines to treat autoimmune disease. Clin. Immunol. 103, 7–12 (2002).

    Article  CAS  Google Scholar 

  38. Warren, K., Katz, I. & Steinman, L. Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: the minimal B cell epitope and a model of its unique features. Proc. Natl. Acad. Sci. USA 92, 11061–11065 (1995).

    Article  CAS  Google Scholar 

  39. Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, research0004.0001–0004.0013 (2001).

    Article  Google Scholar 

  40. Pedotti, R. et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat. Immunol. 2, 216–222 (2001).

    Article  CAS  Google Scholar 

  41. Storey, J.D. A direct approach to false discovery rates. J.R. Stat. Soc. Ser. B-Stat. Methodol. 64, 479–498 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Steinman and Utz laboratories for scientific input. This work was supported by National Institutes of Health (NIH) K08 AR02133, an Arthritis Foundation Chapter Grant and Investigator Award and NIH NHLBI contract N01 HV 28183 to W.H.R; an Arthritis Foundation Investigator Award and Chapter Grant, a Baxter Foundation Career Development Award, a Program in Molecular and Genetic Medicine Grant, NIH grants DK61934, AI50864, AI50865, AI51614, AR49328, and NIH NHLBI contract N01-HV-28183 to P.J.U.; and NIH NINDS 5R01NS18235, NIH U19 DK61934 and NIH NHLBI contract N01-HV-28183 to L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H Robinson.

Ethics declarations

Competing interests

H.G. is an employee of, and owns shares of stock in, Bayhill Therapeutics. W.H.R., P.J.U and L.S. receive financial compensation for consulting for, and own shares of stock in, Bayhill Therapeutics.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, W., Fontoura, P., Lee, B. et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat Biotechnol 21, 1033–1039 (2003). https://doi.org/10.1038/nbt859

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt859

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing