Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chemical discovery and global gene expression analysis in zebrafish

Abstract

The zebrafish (Danio rerio) provides an excellent model for studying vertebrate development and human disease because of its ex utero, optically transparent embryogenesis and amenability to in vivo manipulation. The rapid embryonic developmental cycle, large clutch sizes and ease of maintenance at large numbers also add to the appeal of this species. Considerable genomic data has recently become publicly available that is aiding the construction of zebrafish microarrays, thus permitting global gene expression analysis. The zebrafish is also suitable for chemical genomics, in part as a result of the permeability of its embryos to small molecules and consequent avoidance of external confounding maternal effects. Finally, there is increasing characterization and analysis of zebrafish models of human disease. Thus, the zebrafish offers a high-quality, high-throughput bioassay tool for determining the biological effect of small molecules as well as for dissecting biological pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uses of the zebrafish and the assay tools currently available.
Figure 2: Small-molecule inhibition of apoptosis gene orthologs in zebrafish.
Figure 3: The utility of zebrafish in the drug design and development process.

Similar content being viewed by others

References

  1. Alaoui-Ismaili, M.H., Lomedico, P.T. & Jindal, S. Chemical genomics: discovery of disease genes and drugs. Drug Disc. Today 7, 292–294 (2002).

    Article  Google Scholar 

  2. Törnell, J. & Snaith, M. Transgenic systems in drug discovery: from target identification to humanized mice. Drug Disc. Today 7, 461–470 (2002).

    Article  Google Scholar 

  3. Gmuender, H. Perspectives and challenges for DNA microarrays in drug discovery and development. Biotechniques 32, 152–158 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Zambrowicz, B.P. & Sands, A.T. Knockouts model the 100 best-selling drugs—will they model the next 100? Nat. Rev. Drug Discov. 2, 38–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Grunwald, D.J. & Eisen, J.S. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat. Rev. Genet. 3, 717–723 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Shin, J.T. & Fishman, M.C. From zebrafish to human: modular medical models. Annu. Rev. Genomics Hum. Genet. 3, 311–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Neumann, C.J. Vertebrate development: a view from zebrafish. Semin. Cell Dev. Biol. 13, 469 (2002).

    Article  PubMed  Google Scholar 

  8. Lawson, N.D. & Weinstein, B.M. Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 3, 674–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Spitsbergen, J.M. & Kent, M.L. The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicol. Pathol. 31, 62–87 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Neely, M.N., Pfeifer, J.D. & Caparon, M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect. Immun. 70, 3904–3914 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ju, B. et al. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev. Gene. 25, 158–167 (1999).

    Article  CAS  Google Scholar 

  12. Golling, G. et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 31, 135–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Nasevicius, A. & Ekker, S.C. The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr. Opin. Mol. Ther. 3, 224–228 (2001).

    CAS  PubMed  Google Scholar 

  14. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Halloran, M.C. et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127, 1953–1960 (2000).

    CAS  PubMed  Google Scholar 

  16. Galloway, J.L. & Zon, L.I. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr. Top. Dev. Biol. 53, 139–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sehnert, A.J. & Stainier, D.Y.R. A window to the heart: can zebrafish mutants help us understand heart disease in humans? Trends Genet. 18, 491–494 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Hove, J.R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Goldsmith, P. & Harris, W.A. The zebrafish as a tool for understanding the biology of visual disorders. Semin. Cell Dev. Biol. 14, 11–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Lawson, N.D. & Weinstein, B.M. Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 3, 674–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Du, S.J., Frenkel, V., Kindschi, G. & Zohar, Y. Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev. Biol. 238, 239–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Whitfield, T.T. Zebrafish as a model for hearing and deafness. J. Neurobiol. 53, 157–171 (2002).

    Article  PubMed  Google Scholar 

  23. Amatruda, J.F., Shepard, J.L., Stern, H.M & Zon, L.I. Zebrafish as a cancer model system. Cancer Cell 1, 229–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Langenau, D.M. et al. Myc-induced T-cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Tomasiewicz, H.G., Flaherty, D.B., Soria, J.P. & Wood, J.G. Transgenic zebrafish model of neurodegeneration. J. Neurosci. Res. 70, 734–745 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Guyon, J.R. et al. The dystrophin associated protein complex in zebrafish. Hum. Mol. Genet. 12, 601–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Chambers, S.P., Anderson, L.V.B., Maguire, G.M., Dodd, A. & Love, D.R. Sarcoglycans of the zebrafish: orthology and localization to the sarcolemma and myosepta of muscle. Biochem. Biophys. Res. Commun. 303, 488–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Tamai, K.T., Vardhanabhuti, V., Arthur, S., Foulkes, N.S. & Whitmore, D. Flies and fish: birds of a feather. J. Neuroendocrinol. 15, 344–349 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. O'Kane, C.J. Modelling human diseases in Drosophila and Caenorhabditis. Semin. Cell Dev. Biol. 14, 3–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Brown, W.R.A., Hubbard, S.J., Tickle, C. & Wilson, S.A. The chicken as a model for large-scale analysis of vertebrate gene function. Nat. Rev. Genet. 4, 87–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Anderson, K.V. & Ingham, P.W. The transformation of the model organism: a decade of developmental genetics. Nat. Genet. 33 (Suppl.), 285–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Postlethwait, J.H. et al. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. 10, 1890–1902 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, C. Drug target validation: hitting the target. Nature 422, 341–347 (2003).

    Article  PubMed  Google Scholar 

  34. Colangelo, V. et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70, 462–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Haslett, J.N. et al. Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc. Natl. Acad. Sci. USA. 99, 15000–15005 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Orr, H.T. Microarrays and polyglutamine disorders: reports from the Hereditary Disease Array Group. Hum. Mol. Genet. 11, 1909–1910 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Clark, M.D. et al. An oligonucleotide fingerprint normalized and expressed sequence tag characterized zebrafish cDNA library. Genome Res. 11, 1594–1602 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tabuchi, Y., Kondo, T., Ogawa, R. & Mori, H. DNA microarray analyses of genes elicited by ultrasound in human U937 cells. Biochem. Biophys. Res. Commun. 290, 498–503 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, X.F.S. & Chan, T.-F. Chemical genomics in the global study of protein functions. Drug Dev. Today 7, 197–205 (2002).

    Article  CAS  Google Scholar 

  40. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Carroll, A.S., Bishop, A.C., DeRisi, J.L., Shokat, K.M. & O'Shea, E.K. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc. Natl. Acad. Sci. USA 98, 12578–12583 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin, D.A. et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc. Natl. Acad. Sci. USA 96, 4552–4557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ihle, J.N. Minireview: the challenges of translating knockout phenotypes into gene function. Cell 102, 131–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chan, J., Bayliss, P.E., Wood, J.M. & Roberts, T.M. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell 1, 257–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Ton, C., Stamatiou, D., Dzau, V.J. & Liew, C.-C. Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem. Biophys. Res. Commun. 296, 1134–1142 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Lo, J. et al. 15,000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res. 13, 455–466 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Herwig, R., Aanstad, P., Clark, M. & Lehrach, H. Statistical evaluation of differential expression on cDNA nylon arrays with replicated experiments. Nucleic Acids Res. 29, E117 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stickney, H.L. et al. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res. 12, 1929–1934 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saikumar, P. et al. Apoptosis: definition, mechanisms, and relevance to disease. Am. J. Med. 107, 489–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Yabu, T., Kishi, S., Okazaki, T. & Yamashita, M. Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo. Biochem. J. 360, 39–47 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mogi, A. et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from Parkinsonian brain. J. Neural Transmem. 107, 335–341 (2000).

    Article  CAS  Google Scholar 

  53. Smale G., Nichols N.R., Brady D.R., Finch C.E. & Horton W.E. Jr. Evidence for apoptotic cell death in Alzheimer's disease. Exp. Neurol. 133, 225–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Ventimiglia, R. et al. Research overview role of caspases in Neuronal apoptosis. Drug Dev. Res. 52, 515–533 (2001).

    Article  CAS  Google Scholar 

  55. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Inohara, N. & Nuñez, G. Genes with homology to mammalian apoptosis regulators identified in zebrafish. Cell Death Differ. 7, 509–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Degterev, A. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL . Nat. Cell Biol. 3, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Los, G. et al. Using mRNA expression profiling to determine anticancer drug efficacy. Cytometry 47, 66–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Miyashita, T. et al. Tumor suppressor p53 is a regulator of BCL-2 and BAX gene expression in vitro and in vivo. Oncogene 9, 1799–1805 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support of the University of Auckland Vice Chancellor's Development Fund, University of Auckland Research Committee, Lottery Grants Board of New Zealand and the Maurice and Phyllis Paykel Trust. We thank Vivienne Ward for assistance in graphics production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichler, F., Laurenson, S., Williams, L. et al. Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol 21, 879–883 (2003). https://doi.org/10.1038/nbt852

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing