Bone marrow–derived stem cells initiate pancreatic regeneration

Abstract

We show that transplantation of adult bone marrow–derived cells expressing c-kit reduces hyperglycemia in mice with streptozotocin-induced pancreatic damage. Although quantitative analysis of the pancreas revealed a low frequency of donor insulin-positive cells, these cells were not present at the onset of blood glucose reduction. Instead, the majority of transplanted cells were localized to ductal and islet structures, and their presence was accompanied by a proliferation of recipient pancreatic cells that resulted in insulin production. The capacity of transplanted bone marrow–derived stem cells to initiate endogenous pancreatic tissue regeneration represents a previously unrecognized means by which these cells can contribute to the restoration of organ function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pancreatic damage and induction of hyperglycemia after STZ treatment in NOD/SCID mice.
Figure 2: Reduction of elevated blood glucose in STZ-treated NOD/SCID mice after transplantation with functional whole bone marrow (BM) or purified c-kit-expressing BM cells.
Figure 3: Transplanted donor bone marrow (BM) cells engraft ductal and islet regions in recipient pancreas and produce a low frequency of donor insulin-positive (insulin+) cells devoid of PDX-1 expression.
Figure 4: Donor bone marrow–derived stem cells rapidly engraft the pancreas of recipient mice and induce endogenous pancreatic insulin production.
Figure 5: GFP+ donor cells in the pancreas of transplanted recipient mice promote the proliferation of cells in the ductal and pancreatic islet regions.
Figure 6: Pancreatic engraftment of donor-derived PECAM-1+ endothelial cells correlates with the rapid reduction of hyperglycemia after transplant.

References

  1. 1

    Weissman, I.L., Sander, M. & German, M.S. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Verfaillie, C.M. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol. 12, 502–508 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Pittenger, M.F., Mosca, J.D. & McIntosh, K.R. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr. Top. Microbiol. Immunol. 251, 3–11 (2000).

    CAS  Google Scholar 

  5. 5

    Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Jackson, K.A., Mi, T. & Goodell, M.A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl. Acad. Sci. USA 96, 14482–14486 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229–1234 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Brazelton, T.R., Rossi, F.M., Keshet, G.I. & Blau, H.M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Springer, M.L., Brazelton, T.R., Blau, H.M., Rossi, F.M. & Keshet, G.I. Not the usual suspects: the unexpected sources of tissue regeneration. J. Clin. Invest. 107, 1355–1356 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Wagers, A.J., Sherwood, R.I., Christensen, J.L. & Weissman, I.L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Vassilopoulos, G., Wang, P.R. & Russell, D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Raffii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9, 702–712 (2003).

    Article  Google Scholar 

  16. 16

    Cleaver, O. & Melton, D. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Zysset, T. & Sommer, L. Diabetes alters drug metabolism—in vivo studies in a streptozotozin-diabetic rat model. Experientia 42, 560–562 (1986).

    CAS  Article  Google Scholar 

  18. 18

    Gerling, I.C., Friedman, H., Greiner, D.L., Shultz, L.D. & Leiter, E.H. Multiple low-dose streptozocin-induced diabetes in NOD-scid/scid mice in the absence of functional lymphocytes. Diabetes 43, 433–440 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Elliott, J.I., Dewchand, H. & Altmann, D.M. Streptozotocin-induced diabetes in mice lacking αβ T cells. Clin. Exp. Immunol. 109, 116–120 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Tsirigotis, M. et al. Analysis of ubiquitination in vivo using a transgenic mouse model. Biotechniques 31, 120–126 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Quesenberry, P. et al. Studies on the regulation of hemopoiesis. Exp. Hematol. 13, 43–48 (1985).

    CAS  Google Scholar 

  22. 22

    Nakauchi, H., Sudo, K. & Ema, H. Quantitative assessment of the stem cell self-renewal capacity. Ann. N.Y. Acad. Sci. 938, 18–24 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Ortiz, M. et al. Functional characterization of a novel hematopoietic stem cell and its place in the c-Kit maturation pathway in bone marrow cell development. Immunity 10, 173–182 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Tsai, R.Y. et al. Plasticity, niches, and the use of stem cells. Dev. Cell 2, 707–712 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I. & Melton, D.A. Insulin staining of ES cell progeny from insulin uptake. Science 299, 363 (2003).

    PubMed  Google Scholar 

  26. 26

    Offield, M.F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  Google Scholar 

  27. 27

    Shih, D.Q. et al. Profound defects in pancreatic β-cell function in mice with combined heterozygous mutations in Pdx-1, Hnf-1α, and Hnf-3β. Proc. Natl. Acad. Sci. USA 99, 3818–3823 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Sander, M. & German, M.S. The β cell transcription factors and development of the pancreas. J. Mol. Med. 75, 327–340 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Lammert, E., Cleaver, O. & Melton, D. Role of endothelial cells in early pancreas and liver development. Mech. Dev. 120, 59–64 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Park, K.I., Teng, Y.D. & Snyder, E.Y. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol. 20, 1111–1117 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Ourednik, J., Ourednik, V., Lynch, W.P., Schachner, M. & Snyder, E.Y. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol. 20, 1103–1110 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Edlund, H. Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat. Rev. Genet. 3, 524–532 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Peters, J., Jurgensen, A. & Kloppel, G. Ontogeny, differentiation and growth of the endocrine pancreas. Virchows Arch. 436, 527–538 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Zulewski, H. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Haluzik, M. & Nedvidkova, J. The role of nitric oxide in the development of streptozotocin-induced diabetes mellitus: experimental and clinical implications. Physiol. Res. 49, S37–42 (2000).

    CAS  Google Scholar 

  37. 37

    Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2, 172–180 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Burkart, V. et al. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic β-cell destruction and diabetes development induced by streptozocin. Nat. Med. 5, 314–319 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Funding for this research project was provided by the Canadian Institutes of Health Research, Asahi Kasei Corporation, and a fellowship award from the CIHR for D.H., and a Canadian Research Chair in Stem Cell Biology and Regenerative Medicine to M.B. Special thanks to Krysta Levac, Lisheng Wang, Francis Karanu, Julie McBride and Kristin Chadwick for their insights and assistance towards this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mickie Bhatia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hess, D., Li, L., Martin, M. et al. Bone marrow–derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21, 763–770 (2003). https://doi.org/10.1038/nbt841

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing