Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model of molecular interactions on short oligonucleotide microarrays

A Corrigendum to this article was published on 01 August 2003

Abstract

High-density short oligonucleotide microarrays have become a widely used tool for measuring gene expression on a large scale1,2. However, details of the mechanism of binding on microarrays remain unclear3. Short oligonucleotide probes currently synthesized on microarrays are often ineffective as a result of limited sequence specificity or low sensitivity. Here, we describe a model of binding interactions on microarrays that reveals how probe signals depend on probe sequences and why certain probes are ineffective. The model indicates that the amount of nonspecific binding can be estimated from a simple rule. Using this model, we have developed an improved measure of gene expression for use in data analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model fitting and parameterization.
Figure 2: Accuracy test.
Figure 3: Evaluating probe pair signals with PDNN model.

Similar content being viewed by others

References

  1. Lockhart, D.J. & Winzeler, E.A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).

    Article  CAS  Google Scholar 

  2. van Berkum, N.L. & Holstege, F.C. DNA microarrays: raising the profile. Curr. Opin. Biotechnol. 12, 48–52 (2001).

    Article  CAS  Google Scholar 

  3. Southern, E., Mir, K. & Shchepinov, M. Molecular interactions on microarrays. Nat. Genet. 21, 5–9 (1999).

    Article  CAS  Google Scholar 

  4. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  5. Zhou, Y. & Abagyan, R. Match-Only Integral Distribution (MOID) Algorithm for high-density oligonucleotide array analysis. BMC Bioinformatics 3, 3 (2002).

    Article  Google Scholar 

  6. Naef, F., Hacker, C.R., Patil, N. & Magnasco, M. Characterization of the expression ratio noise structure in high-density oligonucleotide arrays. Genome Biol. 3, research0018 (2002).

    Article  Google Scholar 

  7. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

  8. Sugimoto, N. et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34, 11211–11216 (1995).

    Article  CAS  Google Scholar 

  9. Breslauer, K.J., Frank, R., Blocker, H. & Marky, L.A. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750 (1986).

    Article  CAS  Google Scholar 

  10. Shchepinov, M.S., Case-Green, S.C. & Southern, E.M. Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acids Res. 25, 1155–1161 (1997).

    Article  CAS  Google Scholar 

  11. Forman, J.E., Walton, I.D., Stern, D., Rava, R.P. & Trulson, M.O. in Molecular Modeling of Nucleic Acids vol. 682 206–228 (American Chemical Society, Washington, DC, USA, 1998).

    Google Scholar 

  12. Lazaridis, E.N., Sinibaldi, D., Bloom, G., Mane, S. & Jove, R. A simple method to improve probe set estimates from oligonucleotide arrays. Math. Biosci. 176, 53–58 (2002).

    Article  CAS  Google Scholar 

  13. Lemon, W.J., Palatini, J.J.T., Krahe, R. & Wright, F.A. Theoretical and experimental comparisons of gene expression indexes for oligonucleotide arrays. Bioinformatics 18, 1470–1476 (2002).

    Article  CAS  Google Scholar 

  14. Chu, T.M., Weir, B. & Wolfinger, R. A systematic statistical linear modeling approach to oligonucleotide array experiments. Math. Biosci. 176, 35–51 (2002).

    Article  CAS  Google Scholar 

  15. Chudin, E. et al. Assessment of the relationship between signal intensities and transcript concentration for Affymetrix GeneChip arrays. Genome Biol. 3, research0005 (2002).

    PubMed  Google Scholar 

  16. Irizarry, R.A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003).

    Article  Google Scholar 

  17. Dudley, A.M., Aach, J., Steffen, M.A. & Church, G.M. Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc. Natl. Acad. Sci. USA 99, 7554–7559 (2002).

    Article  CAS  Google Scholar 

  18. Yuen, T., Wurmbach, E., Pfeffer, R.L., Ebersole, B.J. & Sealfon, S.C. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30, e48 (2002).

    Article  Google Scholar 

  19. Li, F. & Stormo, G.D. Selection of optimal DNA oligos for gene expression arrays. Bioinformatics 17, 1067–1076 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Keith Baggerly, Kevin R. Coombes, Kenneth Hess, Jan Hermans, Roberto Carta, Jing Wang, David Gold, LeeAnn Chastain and Zoltan Szallasi for suggestions on the manuscript and Nobert Wilke and Mini Kapoor for technical support. This work was supported by The University of Texas M.D. Anderson Cancer Center, a grant (DA14167) from the National Institute for Drug Abuse and funding from the State of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Miles, M. & Aldape, K. A model of molecular interactions on short oligonucleotide microarrays. Nat Biotechnol 21, 818–821 (2003). https://doi.org/10.1038/nbt836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing