Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A conditionally replicating adenovirus targeted to tumor cells through activated RAS/P-MAPK-selective mRNA stabilization

Abstract

The expression of various proteins associated with rapid responses to inflammation and/or proliferation can be controlled at the level of mRNA stability. Because tumor cells continually recapitulate intracellular programs of proliferation, we have used tumor cell–selective stabilization of mRNA as a means to control therapeutic gene expression. We describe an adenoviral vector that is conditionally replication competent in which expression of the essential adenoviral early region 1A (E1A) gene is regulated by ligation to the 3′ untranslated region (UTR) of PTGS2 (also known as COX2), the gene encoding prostaglandin-endoperoxide synthase 2, allowing activated RAS/P-MAPK-specific stabilization of its mRNA. Induction of activated RAS supports replication, whereas matched cells in which activated RAS/P-MAPK is not expressed are very poor substrates for viral replication both in vitro and in vivo. Further tumor-targeting strategies will also be required to prevent viral replication at extratumoral sites where PTGS2 is normally induced. Many different genes contain 3′ UTRs that control selective mRNA stability under different physiological, pathological and tumor-associated conditions. Therefore, generating tumor selectivity at the level of mRNA stability is a strategy with broad potential applicability in vector design.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Construction and testing of the COX2 3′ UTR strategy.
Figure 2: Induction of Hras stabilizes E1A-COX2 expression.
Figure 3: 3′ UTR mRNA stabilization depends on the P-MAPK pathway.
Figure 4: Replication of Ad-E1A-COX correlates with P-MAPK status.
Figure 5: AD-E1A COX is oncolytic to high–P-MAPK tumors.

References

  1. Biederer, C., Ries, S., Brandts, C.H. & McCormick, F. Replication-selective viruses for cancer therapy. J. Mol. Med. 80, 163–175 (2002).

    Article  CAS  Google Scholar 

  2. Verma, I. & Somia, N. Gene therapy–promises, problems and prospects. Nature 389, 239–242 (1997).

    Article  CAS  Google Scholar 

  3. Vile, R.G., Russell, S.J. & Lemoine, N.R. Cancer gene therapy: hard lessons and new courses. Gene Ther. 7, 2–8 (2000).

    Article  CAS  Google Scholar 

  4. Alemany, R., Balague, C. & Curiel, D.T. Replicative adenoviruses for cancer therapy. Nat. Biotechnol. 18, 723–727 (2000).

    Article  CAS  Google Scholar 

  5. Kirn, D., Martuza, R.L. & Zwiebel, J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med. 7, 781–787 (2001).

    Article  CAS  Google Scholar 

  6. Krasnykh, V., Belousova, N., Korokhov, N., Mikheeva, G. & Curiel, D.T. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J. Virol. 75, 4176–4183 (2001).

    Article  CAS  Google Scholar 

  7. Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997).

    CAS  PubMed  Google Scholar 

  8. Bischoff, J. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    Article  CAS  Google Scholar 

  9. Ramachandra, M. et al. Reengineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat. Biotechnol. 19, 1035–1041 (2001).

    Article  CAS  Google Scholar 

  10. Hallenbeck, P.L. et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum. Gene Ther. 10, 1721–1733 (1999).

    Article  CAS  Google Scholar 

  11. Kurihara, T., Brough, D.E., Kovesdi, I. & Kufe, D.W. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J. Clin. Invest. 106, 763–771 (2000).

    Article  CAS  Google Scholar 

  12. Siders, W.M., Halloran, P.J. & Fenton, R.G. Transcriptional targeting of recombinant adenoviruses to human and murine melanoma cells. Cancer Res. 56, 5638–5646 (1996).

    CAS  PubMed  Google Scholar 

  13. Blackburn, R.V., Galoforo, S.S., Corry, P.M. & Lee, Y.J. Adenoviral-mediated transfer of a heat-inducible double suicide gene into prostate carcinoma cells. Cancer Res. 58, 1358–1362 (1998).

    CAS  PubMed  Google Scholar 

  14. Ring, C.J.A., Harris, J.D., Hurst, H.C. & Lemoine, N.R. Suicide gene expression induced in tumour cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ERBB2 promoter. Gene Ther. 3, 1094–1103 (1996).

    CAS  PubMed  Google Scholar 

  15. Doyle, G.A., Bourdeau-Heller, J.M., Coulthard, S., Meisner, L.F. & Ross, J. Amplification in human breast cancer of a gene encoding a c-myc mRNA-binding protein. Cancer Res. 60, 2756–2759 (2000).

    CAS  PubMed  Google Scholar 

  16. Bauer, S.R. et al. Altered myc gene transcription and intron-induced stabilization of myc RNAs in two mouse plasmacytomas. Oncogene 4, 615–623 (1989).

    CAS  PubMed  Google Scholar 

  17. Ross, J. mRNA stability in mammalian cells. Microbiol. Rev. 59, 423–450 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Derrigo, M., Cestelli, A., Savettieri, G. & Di Liegro, I. RNA-protein interactions in the control of stability and localization of messenger RNA (review). Int. J. Mol. Med. 5, 111–123 (2000).

    CAS  PubMed  Google Scholar 

  19. Chen, C.Y. & Shyu, A.B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995).

    Article  CAS  Google Scholar 

  20. Caput, D. et al. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83, 1670–1674 (1986).

    Article  CAS  Google Scholar 

  21. Shaw, G. & Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659–667 (1986).

    Article  CAS  Google Scholar 

  22. Brook, M., Sully, G., Clark, A.R. & Saklatvala, J. Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett. 483, 57–61 (2000).

    Article  CAS  Google Scholar 

  23. Maity, A., McKenna, W.G. & Muschel, R.J. Evidence for post-transcriptional regulation of cyclin B1 mRNA in the cell cycle and following irradiation in HeLa cells. EMBO J. 14, 603–609 (1995).

    Article  CAS  Google Scholar 

  24. Maity, A., McKenna, W.G. & Muschel, R.J. Cyclin A message stability varies with the cell cycle. Cell Growth Differ. 8, 311–318 (1997).

    CAS  PubMed  Google Scholar 

  25. Lindsten, T., June, C.H., Ledbetter, J.A., Stella, G. & Thompson, C.B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–343 (1989).

    Article  CAS  Google Scholar 

  26. Sheng, H., Shao, J. & Dubois, R.N. K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1. Cancer Res. 61, 2670–2675 (2001).

    CAS  PubMed  Google Scholar 

  27. Claffey, K.P. et al. Identification of a human VPF/VEGF 3′ untranslated region mediating hypoxia-induced mRNA stability. Mol. Biol. Cell 9, 469–481 (1998).

    Article  CAS  Google Scholar 

  28. Chen, C.Y., Xu, N. & Shyu, A.B. mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol. Cell Biol. 15, 5777–5788 (1995).

    Article  CAS  Google Scholar 

  29. Ross, H.J., Sato, N., Ueyama, Y. & Koeffler, H.P. Cytokine messenger RNA stability is enhanced in tumor cells. Blood 77, 1787–1795 (1991).

    CAS  PubMed  Google Scholar 

  30. Lee, C.H., Bradley, G. & Ling, V. Increased P-glycoprotein messenger RNA stability in rat liver tumors in vivo. J. Cell Physiol. 177, 1–12 (1998).

    Article  CAS  Google Scholar 

  31. Sidransky, H., Murty, C.N. & Verney, E. Turnover of messenger RNA in transplantable hepatomas and host liver of rats. Cancer Res. 38, 1645–1653 (1978).

    CAS  PubMed  Google Scholar 

  32. Cao, Y. & Prescott, S.M. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J. Cell Physiol. 190, 279–286 (2002).

    Article  CAS  Google Scholar 

  33. Bakhle, Y.S. COX-2 and cancer: a new approach to an old problem. Br. J. Pharmacol. 134, 1137–1150 (2001).

    Article  CAS  Google Scholar 

  34. Turini, M.E. & DuBois, R.N. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53, 35–57 (2002).

    Article  CAS  Google Scholar 

  35. Sheng, H. et al. Cyclooxygenase-2 induction and transforming growth factor β growth inhibition in rat intestinal epithelial cells. Cell Growth Differ. 8, 463–470 (1997).

    CAS  PubMed  Google Scholar 

  36. Sheng, G.G. et al. A selective cyclooxygenase 2 inhibitor suppresses the growth of H-ras-transformed rat intestinal epithelial cells. Gastroenterology 113, 1883–1891 (1997).

    Article  CAS  Google Scholar 

  37. Sheng, H. et al. Induction of cyclooxygenase-2 by activated Ha-ras oncogene in Rat-1 fibroblasts and the role of mitogen-activated protein kinase pathway. J. Biol. Chem. 273, 22120–22127 (1998).

    Article  CAS  Google Scholar 

  38. Heasley, L.E. et al. Induction of cytosolic phospholipase A2 by oncogenic Ras in human non-small cell lung cancer. J. Biol. Chem. 272, 14501–14504 (1997).

    Article  CAS  Google Scholar 

  39. Sheng, H. et al. Transforming growth factor-β1 enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J. Biol. Chem. 275, 6628–6635 (2000).

    Article  CAS  Google Scholar 

  40. Dixon, D.A., Kaplan, C.D., McIntyre, T.M., Zimmerman, G.A. & Prescott, S.M. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. J. Biol. Chem. 275, 11750–11757 (2000).

    Article  CAS  Google Scholar 

  41. Montero, L. & Nagamine, Y. Regulation by p38 mitogen-activated protein kinase of adenylate- and uridylate-rich element-mediated urokinase-type plasminogen activator (uPA) messenger RNA stability and uPA-dependent in vitro cell invasion. Cancer Res. 59, 5286–5293 (1999).

    CAS  PubMed  Google Scholar 

  42. Gallouzi, I.E. et al. A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol. Cell Biol. 18, 3956–3965 (1998).

    Article  CAS  Google Scholar 

  43. Chong, H., Ruchatz, A., Clackson, T., Rivera, V.M. & Vile, R.G. A system for small-molecule control of conditionally replication-competent adenoviral vectors. Mol. Ther. 5, 195–203 (2002).

    Article  CAS  Google Scholar 

  44. Maity, A. & Solomon, D. Both increased stability and transcription contribute to the induction of the urokinase plasminogen activator receptor (uPAR) message by hypoxia. Exp. Cell Res. 255, 250–257 (2000).

    Article  CAS  Google Scholar 

  45. Henderson, B.R., Tansey, W.P., Phillips, S.M., Ramshaw, I.A. & Kefford, R.F. Transcriptional and posttranscriptional activation of urokinase plasminogen activator gene expression in metastatic tumor cells. Cancer Res. 52, 2489–2496 (1992).

    CAS  PubMed  Google Scholar 

  46. Li, Y.C. & Lieberman, M.W. Two genes associated with liver cancer are regulated by different mechanisms in rasT24 transformed liver epithelial cells. Oncogene 4, 795–798 (1989).

    CAS  PubMed  Google Scholar 

  47. Stauber, C. & Schumperli, D. 3′ processing of pre-mRNA plays a major role in proliferation-dependent regulation of histone gene expression. Nucleic Acids Res. 16, 9399–9414 (1988).

    Article  CAS  Google Scholar 

  48. Yamamoto, M., Alemany, R., Adachi, Y., Grizzle, W.E. & Curiel, D.T. Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers. Mol. Ther. 3, 385–394 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work in this manuscript is dedicated to the memory of Ashfaq Uddin Ahmed. We thank Toni Higgins for expert secretarial assistance. A.A., J.T. and R.V. are supported by the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G Vile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmed, A., Thompson, J., Emiliusen, L. et al. A conditionally replicating adenovirus targeted to tumor cells through activated RAS/P-MAPK-selective mRNA stabilization. Nat Biotechnol 21, 771–777 (2003). https://doi.org/10.1038/nbt835

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing