Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of potent monoclonal antibody auristatin conjugates for cancer therapy

An Erratum to this article was published on 01 August 2003


We describe the in vitro and in vivo properties of monoclonal antibody (mAb)-drug conjugates consisting of the potent synthetic dolastatin 10 analogs auristatin E (AE) and monomethylauristatin E (MMAE), linked to the chimeric mAbs cBR96 (specific to Lewis Y on carcinomas) and cAC10 (specific to CD30 on hematological malignancies). The linkers used for conjugate formation included an acid-labile hydrazone and protease-sensitive dipeptides, leading to uniformly substituted conjugates that efficiently released active drug in the lysosomes of antigen-positive (Ag+) tumor cells. The peptide-linked mAb-valine-citrulline-MMAE and mAb-phenylalanine-lysine-MMAE conjugates were much more stable in buffers and plasma than the conjugates of mAb and the hydrazone of 5-benzoylvaleric acid-AE ester (AEVB). As a result, the mAb-Val-Cit-MMAE conjugates exhibited greater in vitro specificity and lower in vivo toxicity than corresponding hydrazone conjugates. In vivo studies demonstrated that the peptide-linked conjugates induced regressions and cures of established tumor xenografts with therapeutic indices as high as 60-fold. These conjugates illustrate the importance of linker technology, drug potency and conjugation methodology in developing safe and efficacious mAb-drug conjugates for cancer therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structures of drugs and mAb-drug conjugates.
Figure 2: Conjugate characteristics.
Figure 3: Conjugate stability in human and mouse plasma.
Figure 4: In vitro cytotoxicity.
Figure 5: In vivo therapeutic efficacy of the conjugates in immunocompromised mice with subcutaneous human tumor xenografts.


  1. 1

    Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118–129 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Dillman, R.O. Monoclonal antibodies in the treatment of malignancy: basic concepts and recent developments. Cancer Invest. 19, 833–841 (2001).

    CAS  Article  Google Scholar 

  3. 3

    King, K.M. & Younes, A. Rituximab: review and clinical applications focusing on non-Hodgkin's lymphoma. Expert Rev. Anticancer Ther. 1, 177–186 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Schwartzberg, L.S. Clinical experience with edrecolomab: a monoclonal antibody therapy for colorectal carcinoma. Crit. Rev. Oncol. Hematol. 40, 17–24 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signaling network. Nat. Rev. Mol. Biol. 2, 127–137 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Dubowchik, G.M. & Walker, M.A. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol. Ther. 83, 67–123 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Bross, P.F. et al. Approval summary: gentuzamab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

    CAS  PubMed  Google Scholar 

  8. 8

    Hamann, P.R. et al. An anti-CD33 antibody calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug. Chem. 13, 40–46 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Hamann, P.R. et al. Gemtuzamab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13, 47–58 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Trail, P.A. et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261, 212–215 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Saleh, M.N. et al. Phase I trial of anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with Lewis Y-expressing epithelial tumors. J. Clin. Oncol. 18, 2282–2292 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Liu, C. et al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc. Natl. Acad. Sci. USA 93, 8618–8623 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Chari, R.V.J. et al. Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res. 55, 4079–4084 (1995).

    CAS  PubMed  Google Scholar 

  14. 14

    Ojima, I. et al. Tumor-specific novel taxoid monoclonal antibody conjugates. J. Med. Chem. 45, 5620–5623 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Jain, R.K. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50, 814–819 (1990).

    Google Scholar 

  16. 16

    Dubowchik, G.M. et al. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem. 13, 855–869 (2002).

    CAS  Article  Google Scholar 

  17. 17

    King, H.D. et al. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J. Med. Chem. 45, 4336–4343 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Toki, B.E., Cerveny, C.G., Wahl, A.F. & Senter, P.D. Protease-mediated fragmentation of p-amidobenzyl ethers: a new strategy for the activation of anticancer prodrugs. J. Org. Chem. 67, 1866–1872 (2002).

    CAS  Article  Google Scholar 

  19. 19

    de Groot, F.M., Damen, E.W. & Scheeren, H.W. Anticancer prodrugs for application in monotherapy: targeting hypoxia, tumor associated enzymes, and receptors. Curr. Med. Chem. 8, 1093–1122 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Trouet, A., Masquelier, M., Baurain, R. & Deprez-De Campeneere, D. A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: in vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 79, 626–629 (1982).

    CAS  Article  Google Scholar 

  21. 21

    Pettit, G.R. The dolastatins. Fortschr. Chem. Org. Naturst. 70, 1–79 (1997).

    CAS  PubMed  Google Scholar 

  22. 22

    Vaishampayan, U. et al. Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma Clin. Cancer Res. 6, 4205–4208 (2000).

    CAS  PubMed  Google Scholar 

  23. 23

    Madden, T. et al. Novel marine-derived anticancer agents: a phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 376128) in patients with advanced solid tumors. Clin. Cancer Res. 6, 1293–1301 (2000).

    CAS  PubMed  Google Scholar 

  24. 24

    Otani, M. et al. TZT-1027, an antimicrotubule agent, attacks tumor vasculature and induces tumor cell death. Jpn. J. Cancer Res. 91, 837–844 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Pettit, G.R. & Barkoczy, J. Tumor inhibiting tetrapeptide bearing modified phenethyl amides. US 5,635,483 (1997).

  26. 26

    Carl, P.L., Chakravarty, P.K. & Katzenellenbogen, J.A. A novel connector linkage applicable in prodrug design. J. Med. Chem. 24, 479–480 (1982).

    Article  Google Scholar 

  27. 27

    Koblinski, J.E., Ahram, M. & Sloane, B.F. Unraveling the role of proteases in cancer. Clin. Chim. Acta 291, 113–135 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Wahl, A.F. et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin's disease. Cancer Res. 62, 3736–3742 (2002).

    CAS  PubMed  Google Scholar 

  29. 29

    Satoh, T. & Hosokawa, M. The mammalian carboxylesterases: from molecules to functions. Annu. Rev. Pharmacol. Toxicol. 38, 257–288 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Schrappe, M. et al. Long-term growth suppression of human glioma xenografts by chemoimmunoconjugates of 4-desacetylvinblastine-3-carboxyhydrazide and monoclonal antibody 9.2.27. Cancer Res. 52, 3838–3844 (1992).

    CAS  PubMed  Google Scholar 

  31. 31

    Wallace, P.M. & Senter, P.D. In vitro and in vivo activities of monoclonal antibody-alkaline phosphatase conjugates in combination with phenol mustard phosphate. Bioconjug. Chem. 2, 349–352 (1991).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by Grant 1R43 CA 88583-01A1 from the National Cancer Institute. We acknowledge George Robert Pettit, Nathan Ihle and Perry Fell for useful discussions, and Nick Vincent-Maloney, Starr Rejniak and Jennifer Haugen for experimental assistance.

Author information



Corresponding author

Correspondence to Peter D Senter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doronina, S., Toki, B., Torgov, M. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21, 778–784 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing