Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A method for the comprehensive proteomic analysis of membrane proteins

Abstract

We describe a method that allows for the concurrent proteomic analysis of both membrane and soluble proteins from complex membrane-containing samples. When coupled with multidimensional protein identification technology (MudPIT), this method results in (i) the identification of soluble and membrane proteins, (ii) the identification of post-translational modification sites on soluble and membrane proteins, and (iii) the characterization of membrane protein topology and relative localization of soluble proteins. Overlapping peptides produced from digestion with the robust nonspecific protease proteinase K facilitates the identification of covalent modifications (phosphorylation and methylation). High-pH treatment disrupts sealed membrane compartments without solubilizing or denaturing the lipid bilayer to allow mapping of the soluble domains of integral membrane proteins. Furthermore, coupling protease protection strategies to this method permits characterization of the relative sidedness of the hydrophilic domains of membrane proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Application of the hpPK method to complex membrane-containing samples.
Figure 2: Characterization of membrane protein topology and relative protein localization.
Figure 3: Distribution of transmembrane domains and total sequence coverage in identified brain proteins.
Figure 4: Comprehensive characterization of individual proteins from unfractionated rat brain homogenates.
Figure 5: Comprehensive characterization of a Golgi membrane protein from a global protease protection analysis.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell (Garland Science, New York, 2002).

    Google Scholar 

  2. Santoni, V., Molloy, M. & Rabilloud, T. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070 (2000).

    Article  CAS  Google Scholar 

  3. Washburn, M.P., Wolters, D. & Yates, J.R., III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  4. Han, D.K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2001).

    Article  CAS  Google Scholar 

  5. Blonder, B. et al. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography–tandem mass spectrometry. J. Proteome Res. 1, 351–360 (2002).

    Article  CAS  Google Scholar 

  6. Goshe, M.B., Blonder, B. & Smith, R.D. Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. J. Proteome Res. 2, 153–161 (2003).

    Article  CAS  Google Scholar 

  7. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    Article  CAS  Google Scholar 

  8. Oda, Y., Nagasu, T. & Chait, B.D. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  Google Scholar 

  9. Goshe, M.B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analysis. Anal. Chem. 73, 2578–2586 (2001).

    Article  CAS  Google Scholar 

  10. Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

    Article  CAS  Google Scholar 

  11. MacCoss, M.J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA 99, 7900–7905 (2002).

    Article  CAS  Google Scholar 

  12. Cheeseman, I.M. et al. Phospho-regulation of kinetochore–microtubule attachments by the aurora kinase ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  Google Scholar 

  13. Howell, K.E. & Palade, G.E. Hepatic Golgi fractions resolved into membrane and content subfractions. J. Cell Biol. 92, 822–832 (1982).

    Article  CAS  Google Scholar 

  14. Taylor, R.S. et al. Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis 21, 3441–3459 (2000).

    Article  CAS  Google Scholar 

  15. Blobel, G. & Sabatini, D.D. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J. Cell Biol. 45, 130–145 (1970).

    Article  CAS  Google Scholar 

  16. Sabatini, D.D. & Blobel, G. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes. J. Cell Biol. 45, 146–157 (1970).

    Article  CAS  Google Scholar 

  17. Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682 (1999).

    Article  CAS  Google Scholar 

  18. MacCoss, M.J., Wu, C.C. & Yates, J.R., III. Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74, 5593–5599 (2002).

    Article  CAS  Google Scholar 

  19. Moller, S., Croning, M.D.R. & Apweiler, R. Evaluation of methods for the prediction of membrane-spanning regions. Bioinformatics 17, 646–653 (2001).

    Article  CAS  Google Scholar 

  20. Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    Article  CAS  Google Scholar 

  21. Blom, N., Gammeltoft, S. & Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999).

    Article  CAS  Google Scholar 

  22. Foletti, D.L., Lin, R., Finley, M.A. & Scheller, R.H. Phosphorylated syntaxin 1 is localized to discrete domains along a subset of axons. J. Neurosci. 20, 4535–4544 (2000).

    Article  CAS  Google Scholar 

  23. Madrid, R. et al. Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin–adaptor complexes. EMBO J. 20, 7021 (2001).

    Article  Google Scholar 

  24. Zelenina, M., Zelenin, S., Bondar, A.A., Brismar, H. & Aperia, A. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am. J. Physiol. Renal Physiol. 283, F309–F318 (2002).

    Article  CAS  Google Scholar 

  25. Sprong, H. et al. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 237, 25880–25888 (1998).

    Article  Google Scholar 

  26. Ring, G. & Eichler, J. Characterization of inverted membrane vesicles from the halophilic archaeon Haloferax volcanii. J. Membr. Biol. 183, 195–204 (2001).

    Article  CAS  Google Scholar 

  27. Kawano, J. et al. CALNUC (nucleobindin) is localized in the Golgi apparatus in insect cells. Eur. J. Cell Biol. 79, 16167–16173 (2000).

    Article  Google Scholar 

  28. Morel-Huaux, V.M. et al. The calcium-binding protein p54/NEFA is a novel luminal resident of medial Golgi cisternae that trafficks independently of mannosidase II. Eur. J. Cell Biol. 81, 87–100 (2002).

    Article  CAS  Google Scholar 

  29. Taylor, R.S., Jones, S.M., Dahl, R.H., Nordeen, M.H. & Howell, K.E. Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol. Biol. Cell 8, 1911–1931 (1997).

    Article  CAS  Google Scholar 

  30. Wen, D.X., Svensson, E.C. & Paulson, J.C. Tissue-specific alternative splicing of the β-galactoside α2,6- sialyltransferase gene. J. Biol. Chem. 267, 2512–2518 (1992).

    CAS  PubMed  Google Scholar 

  31. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).

    Article  CAS  Google Scholar 

  32. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  Google Scholar 

  33. Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).

    Article  CAS  Google Scholar 

  34. Washburn, M.P., Ulaszek, R., Deciu, C., Schieltz, D.M. & Yates, J.R., III. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74, 1650–1657 (2002).

    Article  CAS  Google Scholar 

  35. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (2000).

    Article  Google Scholar 

  36. Eng, J.K., McCormack, A.L. & Yates, J.R., III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  37. Tabb, D.L., McDonald, W.H. & Yates, J.R., III. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    Article  CAS  Google Scholar 

  38. Roepstorff, P. & Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the American Cancer Society PF-03-065-01-MGO (C.C.W.) and the National Institute of Health grants F32DK59731 (M.J.M.), RO1-GM42629 (K.E.H) and R33 CA81665 and RR11823 (J.R.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Yates III.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., MacCoss, M., Howell, K. et al. A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21, 532–538 (2003). https://doi.org/10.1038/nbt819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing