Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury

Abstract

Vascular immunotargeting may facilitate the rapid and specific delivery of therapeutic agents to endothelial cells. We investigated whether targeting of an antioxidant enzyme, catalase, to the pulmonary endothelium alleviates oxidative stress in an in vivo model of lung transplantation. Intravenously injected enzymes, conjugated with an antibody to platelet-endothelial cell adhesion molecule-1, accumulate in the pulmonary vasculature and retain their activity during prolonged cold storage and transplantation. Immunotargeting of catalase to donor rats augments the antioxidant capacity of the pulmonary endothelium, reduces oxidative stress, ameliorates ischemia-reperfusion injury, prolongs the acceptable cold ischemia period of lung grafts, and improves the function of transplanted lung grafts. These findings validate the therapeutic potential of vascular immunotargeting as a drug delivery strategy to reduce endothelial injury. Potential applications of this strategy include improving the outcome of clinical lung transplantation and treating a wide variety of endothelial disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunotargeting of anti-PECAM/β-Gal to the pulmonary endothelium in rats.
Figure 2: Anti-PECAM/catalase immunotargeting, internalization, lysosomal trafficking, and protection against H2O2 in endothelial cell culture.
Figure 3: Anti-PECAM/catalase targeting protects perfused lungs from oxidative stress.
Figure 4: Anti-PECAM/catalase ameliorates lung transplant ischemia-reperfusion injury.
Figure 5: Anti-PECAM/catalase alleviates oxidative stress in transplanted lungs.
Figure 6: Safety of anti-PECAM/catalase immunotargeting.

Similar content being viewed by others

References

  1. Gibbons, G. & Dzau, V. Molecular therapies for vascular diseases. Science 272, 689–693 (1996).

    Article  CAS  Google Scholar 

  2. Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998).

    CAS  Google Scholar 

  3. Duo, L. & Saltzman, W.M. Synthetic DNA delivery systems. Nat. Biotechnol. 18, 33–37 (2000).

    Article  Google Scholar 

  4. Reynolds, P. et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat. Biotechnol. 19, 898–842 (2001).

    Article  Google Scholar 

  5. Muzykantov, V. Immunotargeting of drugs to the pulmonary vascular endothelium as a therapeutic strategy. Pathophysiology 5, 15–33 (1998).

    Article  CAS  Google Scholar 

  6. Muzykantov, V.R. et al. Streptavidin facilitates internalization and pulmonary targeting of an anti-endothelial cell antibody (platelet-endothelial cell adhesion molecule 1): a strategy for vascular immunotargeting of drugs. Proc. Natl. Acad. Sci. USA 96, 2379–2384 (1999).

    Article  CAS  Google Scholar 

  7. Li, S., Tan, Y., Viroonchatapan, E., Pitt, B.R. & Huang, L. Targeted gene delivery to pulmonary endothelium by anti-PECAM antibody. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L504–L511 (2000).

    Article  CAS  Google Scholar 

  8. Scherpereel, A. et al. Cell-selective intracellular delivery of a foreign enzyme to endothelium in vivo using vascular immunotargeting. FASEB. J. 15, 416–426 (2001).

    Article  CAS  Google Scholar 

  9. Scherpereel, A. et al. Platelet-endothelial cell adhesion molecule-1-directed immunotargeting to cardiopulmonary vasculature. J. Pharmacol. Exp. Ther. 300, 777–786 (2002).

    Article  CAS  Google Scholar 

  10. Eckenhoff, R.G., Dodia, C., Tan, Z. & Fisher, A.B. Oxygen-dependent reperfusion injury in the isolated rat lung. J. Appl. Physiol. 72, 1454–1460 (1992).

    Article  CAS  Google Scholar 

  11. Eppinger, M.J., Deeb, G.M., Bolling, S.F. & Ward, P.A. Mediators of ischemia-reperfusion injury of rat lung. Am. J. Pathol. 150, 1773–1784 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, C. & Jackson, R.M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell. Physiol. 282, C227–C241 (2002).

    Article  CAS  Google Scholar 

  13. Chabot, F., Mitchell, J.A., Gutteridge, J.M.C. & Evans, T.W. Reactive oxygen species in acute lung injury. Eur. Respir. J. 11, 745–757 (1998).

    CAS  PubMed  Google Scholar 

  14. Novick, R.J., Gehman, K.E., Ali, I.S. & Lee, J. Lung preservation: the importance of endothelial and alveolar type II cell integrity. Ann. Thorac. Surg. 62, 302–314 (1996).

    Article  CAS  Google Scholar 

  15. King, R.C. et al. Reperfusion injury significantly impacts clinical outcome after pulmonary transplantation. Ann. Thorac. Surg. 69, 1681–1685 (2000).

    Article  CAS  Google Scholar 

  16. Meyers, B.F. et al. Lung transplantation: a decade of experience. Ann. Surg. 230, 362–371 (1999).

    Article  CAS  Google Scholar 

  17. Christie, J.D. et al. Primary graft failure following lung transplantation. Chest. 114, 51–60 (1998).

    Article  CAS  Google Scholar 

  18. Kelly, R.F. Current strategies in lung preservation. J. Lab. Clin. Med. 136, 427–440 (2000).

    Article  CAS  Google Scholar 

  19. Muzykantov, V.R. Targeting of superoxide dismutase and catalase to vascular endothelium. J. Control. Release 71, 1–21 (2001).

    Article  CAS  Google Scholar 

  20. Christofidou-Solomidou, M. et al. Vascular immunotargeting of glucose oxidase to the endothelial antigens induces distinct forms of oxidant acute lung injury. Am. J. Pathol. 160, 1155–1169 (2002).

    Article  CAS  Google Scholar 

  21. Muzykantov, V.R., Atochina, E.N., Ischiropoulos, H., Danilov, S.M. & Fisher, A.B. Immunotargeting of antioxidant enzymes to the pulmonary endothelium. Proc. Natl. Acad. Sci. USA 93, 5213–5218 (1996).

    Article  CAS  Google Scholar 

  22. Danilov, S.M. et al. Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L1335–L1347 (2001).

    Article  CAS  Google Scholar 

  23. Spragg, D.D. et al. Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc. Natl. Acad. Sci. USA 94, 8795–8800 (1997).

    Article  CAS  Google Scholar 

  24. Maruyama, K., Kennel, S.J. & Huang, L. Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc. Natl. Acad. Sci. USA 87, 5744–5748 (1990).

    Article  CAS  Google Scholar 

  25. Rajotte, D. et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest. 102, 430–437 (1998).

    Article  CAS  Google Scholar 

  26. McIntosh, D.P., Tan, X.Y., Oh, P. & Schnitzer, J.E. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc. Natl. Acad. Sci. USA 99, 1996–2001 (2002).

    Article  CAS  Google Scholar 

  27. Davis, M.G. & Hagen, P-O. The vascular endothelium. Ann. Surg. 218, 593–609 (1993).

    Article  Google Scholar 

  28. Newman, P.J. The biology of PECAM-1. J. Clin. Invest. 99, 3–8 (1997).

    Article  CAS  Google Scholar 

  29. Wiewrodt, R. et al. Size-dependant intracellular immunotargeting of therapeutic cargoes into endothelial cells. Blood 99, 912–922 (2002).

    Article  CAS  Google Scholar 

  30. Christofidou-Solomidou, M. et al. Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L794–L805 (2000).

    Article  CAS  Google Scholar 

  31. Williams, A. et al. Compromised antioxidant status and persistent oxidative stress in lung transplant recipients. Free Radic. Res. 30, 383–393 (1999).

    Article  CAS  Google Scholar 

  32. Freeman, B.A. & Crapo, J.D. Biology of disease: free radicals and tissue injury. Lab. Invest. 47, 412–426 (1982).

    CAS  PubMed  Google Scholar 

  33. Al-Mehdi, A.B. et al. Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ. Res. 83, 730–737 (1998).

    Article  CAS  Google Scholar 

  34. Siflingerbirnboim, A. & Malik, A.B. Neutrophil adhesion to endothelial cells impairs the effects of catalase and glutathione in preventing endothelial injury. J. Cell. Physiol. 155, 234–239 (1993).

    Article  CAS  Google Scholar 

  35. Turrens, J.F., Crapo, J.D. & Freeman, B.A. Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J. Clin. Invest. 73, 87–95 (1984).

    Article  CAS  Google Scholar 

  36. Yabe, Y., Nishikawa, M., Tamada, A., Takakura, Y. & Hashida, M. Targeted delivery and improved therapeutic potential of catalase by chemical modification: combination with superoxide dismutase derivatives. J. Pharmacol. Exp. Ther. 289, 1176–1184 (1999).

    CAS  PubMed  Google Scholar 

  37. Corvo, M. et al. Intravenous administration of superoxide dismutase entrapped in long circulating liposomes. II. In vivo fate in a rat model of adjuvant arthritis. Biochem. Biophys. Acta. 77633, 1–10 (1999).

    Google Scholar 

  38. Vaporciyan, A.A. et al. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 262, 1580–1582 (1993).

    Article  CAS  Google Scholar 

  39. Bogen, S., Pak, J., Garifallou, M., Deng, X. & Muller, W.A. Monoclonal antibody to murine PECAM-1 (CD31) blocks acute inflammation in vivo. J. Exp. Med. 179, 1059–1064 (1994).

    Article  CAS  Google Scholar 

  40. Fujita, T. et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by de-repression of fibrinolysis. Nat. Med. 7, 598–604 (2001).

    Article  CAS  Google Scholar 

  41. Kozower, B.D. et al. Intramuscular gene transfer of interleukin-10 reduces neutrophil recruitment and ameliorates lung graft ischemia-reperfusion injury. Am. J. Transplant. 2, 837–842 (2002).

    Article  CAS  Google Scholar 

  42. Hiratsuka, M. et al. Heat shock pretreatment protects pulmonary isografts from subsequent ischemia-reperfusion injury. J. Heart Lung Transplant. 17, 1238–1246 (1998).

    CAS  PubMed  Google Scholar 

  43. Mizuta, T., Kawaguchi, A., Nakahara, K. & Kawashima, Y. Simplified rat lung transplantation using a cuff technique. J. Thorac. Cardiovasc. Surg. 97, 578–581 (1989).

    CAS  PubMed  Google Scholar 

  44. Gow, A.J. et al. Immunotargeting of glucose oxidase: intracellular production of H2O2 and endothelial oxidative stress. Am. J. Physiol. 277, L271–L281 (1999).

    Article  CAS  Google Scholar 

  45. Atochina, E.N., Muzykantov, V.R., Al-Mehdi, A.B., Danilov, S.M. & Fisher, A.B. Normoxic lung ischemia/reperfusion accelerates shedding of angiotensin converting enzyme from the pulmonary endothelium. Am. J. Respir. Crit. Care. Med. 156, 1114–1119 (1997).

    Article  CAS  Google Scholar 

  46. Buerk, D.G. Electrochemical transducers in biology and medicine. in Biosensors: Theory and Applications 39–61 (Technomic Publishing, Lancaster, Pennsylvania, 1993).

    Google Scholar 

Download references

Acknowledgements

The authors thank M. Nakada (Centocor, Malvern, Pennsylvania) for a generous gift of anti-PECAM mAb 62, R. Wiewrodt and V. Shuvaev (University of Pennsylvania) for their advice and valuable help in characterization of the conjugates size by Dynamic Light Scattering, A.P. Thomas for help in conjugate preparation and experiments with cell cultures, and D.W. Harshaw for help in experiments with perfused rat lungs. The authors also acknowledge the help of T. Tagawa and S. Kanaan (Washington University) for their support with the transplantation experiments and R. Schuessler and B.W. McKane for their statistical and laboratory assistance. S.M. is supported by a fellowship from the Fundacion Ramon Areces (Spain). The work was supported by US National Institutes of Health SCOR in Acute Lung Injury (NHLBI HL 60290, Project 4 to V.R.M. and S.M.A.), ALA Research Grant (no. RG-087-N to M.C.S.) and National Institutes of Health grant 1 R01 HL41281 (to G.A.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Muzykantov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozower, B., Christofidou-Solomidou, M., Sweitzer, T. et al. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nat Biotechnol 21, 392–398 (2003). https://doi.org/10.1038/nbt806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing