Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes

Abstract

New technologies are needed to characterize the migration, survival, and function of antigen-specific T cells in vivo. Here, we demonstrate that Epstein-Barr virus (EBV)–specific T cells transduced with vectors encoding herpes simplex virus-1 thymidine kinase (HSV-TK) selectively accumulate radiolabeled 2′-fluoro-2′-deoxy-1-β-D-arabinofuranosyl-5-iodouracil (FIAU). After adoptive transfer, HSV-TK+ T cells labeled in vitro or in vivo with [131I]FIAU or [124I]FIAU can be noninvasively tracked in SCID mice bearing human tumor xenografts by serial images obtained by scintigraphy or positron emission tomography (PET), respectively. These T cells selectively accumulate in EBV+ tumors expressing the T cells' restricting HLA allele but not in EBV or HLA-mismatched tumors. The concentrations of transduced T cells detected in tumors and tissues are closely correlated with the concentrations of label retained at each site. Radiolabeled transduced T cells retain their capacity to eliminate targeted tumors selectively. This technique for imaging the migration of ex vivo–transduced antigen-specific T cells in vivo is informative, nontoxic, and potentially applicable to humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro analyses of HSV-TK-transduced T lymphocytes.
Figure 2: HLA-restricted cytotoxicity of EBV-specific HSV-TK-transduced T cells and anti-EBV cytotoxic activity of T cells transduced to express HSV-TK after co-incubation with [124I]FIAU or [131I]FIAU.
Figure 3: Biodistribution of [131I]FIAU-labeled NIT+ human EBV-specific T cells over time in SCID mice bearing human EBV lymphoma xenografts.
Figure 4: MicroPET imaging of T-cell migration and targeting.
Figure 5: Tissue accumulation of [124I]FIAU by CTL-TKGFP and normal organs over the course of the experiment.

Similar content being viewed by others

References

  1. Papadopoulos, E.B. et al. Infusions of donor leukocytes as treatment of Epstein-Barr virus associated lymphoproliferative disorders complicating allogeneic marrow transplantation. N. Engl. J. Med. 330, 1185–1191 (1994).

    Article  CAS  Google Scholar 

  2. Heslop, H.E., Brenner, M.K. & Rooney, C.M. Donor T-cells to treat EBV-associated lymphoma. N. Engl. J. Med. 331, 679–680 (1994).

    Article  CAS  Google Scholar 

  3. Riddell, S.R. et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones. Science 257, 238–241 (1992).

    Article  CAS  Google Scholar 

  4. Rooney, C.M. et al. Use of gene-modified virus-specific T-lymphocytes to control Epstein-Barr-virus–related lymphoproliferation. Lancet 345, 9–13 (1995).

    Article  CAS  Google Scholar 

  5. Kolb, H.J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).

    CAS  PubMed  Google Scholar 

  6. Collins, R.H. et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol. 15, 433–438 (1997).

    Article  Google Scholar 

  7. Dudley, M.E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  Google Scholar 

  8. Dreno, B. et al. Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma. Cancer Immunol. Immunother. 51, 539–546 (2002).

    Article  CAS  Google Scholar 

  9. Korf, J., Veenma-van der Duin, L., Brinkman-Medema, R., Niemarkt, A. & de Leij, L.F. Divalent cobalt as a label to study lymphocytes distribution using PET and SPECT. J. Nucl. Med. 39, 836–841 (1998).

    CAS  PubMed  Google Scholar 

  10. Gobuty, A.H., Robinson, R.G. & Barth, R.F. Organ distribution of 99mTc- and 51Cr-labeled autologous peripheral blood lymphocytes in rabbits. J. Nucl. Med. 18, 141–146 (1977).

    CAS  PubMed  Google Scholar 

  11. Papierniak, C.K., Bourey, R.E., Kretschmer, R.R., Gotoff, S.P. & Colombetti, L.G. Technetium-99m labeling of human monocytes for chemotactic studies. J. Nucl. Med. 17, 988–992 (1976).

    CAS  PubMed  Google Scholar 

  12. Tjuvajev, J.G. et al. Imaging the expression of transfected genes in vivo. Cancer Res. 55, 6126–6132 (1995).

    CAS  PubMed  Google Scholar 

  13. Tjuvajev, J.G. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095 (1996).

    CAS  Google Scholar 

  14. Larson, S.M., Tjuvajev, J. & Blasberg, R. Triumph over mischance: a role for nuclear medicine in gene therapy. J. Nucl. Med. 38, 1230–1233 (1997).

    CAS  PubMed  Google Scholar 

  15. Tjuvajev, J.G. et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 58, 4333–4341 (1998).

    CAS  PubMed  Google Scholar 

  16. Gambhir, S.S. et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2, 118–138 (2000).

    Article  CAS  Google Scholar 

  17. Gambhir, S.S., Barrio, J.R., Herschman, H.R. & Phelps, M.E. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338 (1999).

    Article  CAS  Google Scholar 

  18. Costa, G.L. et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T-cell delivery of the IL-12 p40 subunit. J. Immunol. 167, 2379–2387 (2001).

    Article  CAS  Google Scholar 

  19. Koehne, G., Gallardo, H.F., Sadelain, M. & O'Reilly, R.J. Rapid selection of antigen-specific T-lymphocytes by retroviral transduction. Blood 96, 109–117 (2000).

    CAS  PubMed  Google Scholar 

  20. Koehne, G. et al. In vivo imaging of human radiolabeled antigen-specific donor T-lymphocytes after adoptive transfer in SCID mice. Mol. Ther. 1, 643a (2000).

    Google Scholar 

  21. Jacobs, A. et al. Functional coexpression of HSV-TK thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1, 154–161 (1999).

    Article  CAS  Google Scholar 

  22. Zatz, M.M. & Lance, E.M. Lymphocyte trapping in tolerant mice. Cell. Immunol. 1, 3 (1970).

    Article  CAS  Google Scholar 

  23. Mukherji, B. et al. Imaging pattern of previously in vitro sensitized and interleukin-2 expanded autologous lymphocytes in human cancer. Int. J. Radiat. Appl. Instrum. B 15, 419–427 (1998).

    Article  Google Scholar 

  24. Spencer, R.P. & Mukherji, B. Utilization of tumor-sensitized ('educated') and radiolabeled lymphocytes for tumor localization. Nucl. Med. Commun. 9, 783–786 (1988).

    Article  CAS  Google Scholar 

  25. Fisher, B. et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J. Clin. Oncol. 7, 250–261 (1989).

    Article  CAS  Google Scholar 

  26. Rannie, G.H., Thakur, M.L. & Ford, W.L. An experimental comparison of radioactive labels with potential application to lymphocyte migration studies in patients. Clin. Exp. Immunol. 29, 509–514 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Adonai, N. et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methyl-thiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc. Natl. Acad. Sci. USA 99, 3030–3035 (2002).

    Article  CAS  Google Scholar 

  28. Lewin, M. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000).

    Article  CAS  Google Scholar 

  29. Dodd, C.H. et al. Normal T-cell responses and in vivo magnetic resonance imaging of T-cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods 256, 89–105 (2001).

    Article  CAS  Google Scholar 

  30. Schelper, R.L. & Adrian, E.K. Jr. Monocytes become macrophages; they do not become microglia: a light and electron microscopic autoradiographic study using 125-iododeoxyuridine. J. Neuropathol. Exp. Neurol. 45, 1–19 (1986).

    Article  CAS  Google Scholar 

  31. Blasberg, R.G. et al. Imaging brain tumor proliferative activity with [124I]iododeoxyuridine. Cancer Res. 60, 624–635 (2000).

    CAS  PubMed  Google Scholar 

  32. Tjuvajev, J.G. et al. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine. J. Nucl. Med. 35, 1407–1417 (1994).

    CAS  PubMed  Google Scholar 

  33. Edinger, M. et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur. J. Cancer 38, 2128–2136 (2002).

    Article  CAS  Google Scholar 

  34. Edinger, M. et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101, 640–648; published online 26 September 2002 (10.1182/blood-2002-06-1751).

    Article  Google Scholar 

  35. Lacerda, J.F. et al. Human Epstein-Barr virus (EBV)-specific cytotoxic T-lymphocytes home preferentially to and induce selective regressions of autologous EBV-induced B-cell lymphoproliferations in xenografted C.B-17scid/scid mice. J. Exp. Med. 183, 1215–1228 (1996).

    Article  CAS  Google Scholar 

  36. Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997).

    Article  CAS  Google Scholar 

  37. Tiberghien, P. et al. Administration of herpes simplex-thymidine kinase-expressing donor T-cells with a T-cell-depleted allogeneic marrow graft. Blood 97, 63–72 (2001).

    Article  CAS  Google Scholar 

  38. Verzeletti, S. et al. Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors. Hum. Gene. Ther. 9, 2243–2251 (1998).

    Article  CAS  Google Scholar 

  39. Gallardo, H.F., Tan, C. & Sadelain, M. The internal ribosomal entry site of the encephalomyocarditis virus enables reliable coexpression of two transgenes in human primary T-lymphocytes. Gene Ther. 4, 1115–1119 (1997).

    Article  CAS  Google Scholar 

  40. Sheh, Y. et al. Low energy cyclotron production and chemical separation of “no carrier added” iodine-124 from a reusable, enriched tellurium-124 dioxide/aluminum oxide solid solution target. Radiochim. Acta 88, 169–173 (2000).

    Article  CAS  Google Scholar 

  41. Doubrovin, M. et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc. Natl. Acad. Sci. USA 98, 9300–9305 (2001).

    Article  CAS  Google Scholar 

  42. Yan, Y. et al. Growth pattern and clinical correlation of subcutaneously inoculated human primary acute leukemias in severe combined immunodeficiency mice. Blood 88, 3137–3146 (1996).

    CAS  PubMed  Google Scholar 

  43. Shepp, L.A. & Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging MI-1, 113–122 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants CA59350, P50 CA86438, CA23766, HL53752, CA57599, CA76117, R24 CA83084, Department of Energy grants FG02-02ER63481, FG03-86ER60407, and 95ER62039, a Translational Research Award of the Leukemia and Lymphoma Society, The Aubrey Fund for Pediatric Cancer Research, The Larry H. Smead Fund, and The Vincent Astor Chair Research Fund. We thank Judith Guerrero, Brad Beatty, and Tatiana Beresten for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. O'Reilly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehne, G., Doubrovin, M., Doubrovina, E. et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21, 405–413 (2003). https://doi.org/10.1038/nbt805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing