Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Kindling fluorescent proteins for precise in vivo photolabeling

A Corrigendum to this article was published on 01 April 2003

Abstract

Photobleaching of green fluorescent protein (GFP) is a widely used approach for tracking the movement of subcellular structures and intracellular proteins1,2,3. Although photobleaching is a powerful technique, it does not allow direct tracking of an object's movement and velocity within a living cell. Direct tracking becomes possible only with the introduction of a photoactivated fluorescent marker. A number of previous studies have reported optically induced changes in the emission spectra of fluorescent proteins4,5,6,7. However, the ideal photoactivated fluorescent marker should be a nonfluorescent tag capable of “switching on” (i.e., becoming fluorescent) in response to irradiation by light of a particular wavelength, intensity, and duration. In this report, we generated a mutant of Anemonia sulcata chromoprotein asCP8. The mutant protein is capable of unique irreversible photoconversion from the nonfluorescent to a stable bright-red fluorescent form (“kindling”). This “kindling fluorescent protein” (KFP1) can be used for precise in vivo photolabeling to track the movements of cells, organelles, and proteins. We used KFP1 for in vivo cell labeling in mRNA microinjection assays to monitor Xenopus laevis embryo development and to track mitochondrial movement in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KFP1 and asCP kindling.
Figure 2: Xenopus laevis embryo development imaged using KFP1.
Figure 3: Mitochondrial tracking within the eukaryotic cell using KFP1.

Similar content being viewed by others

References

  1. White, J. & Stelzer, E. Photobleaching GFP reveals protein dynamics inside live cells. Trends. Cell Biol. 9, 61–65 (1999).

    Article  CAS  Google Scholar 

  2. Reits, E.A. & Neefjes, J.J. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3, 145–147 (2001).

    Article  Google Scholar 

  3. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  4. Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat. Biotechnol. 14, 1252–1256 (1996).

    Article  CAS  Google Scholar 

  5. Elowitz, M.B., Surette, M.G., Wolf, P., Stock, J. & Leibler, S. Photoactivation turns green fluorescent protein red. Curr. Biol. 7, 809–812 (1997).

    Article  CAS  Google Scholar 

  6. Marchant, J.S., Stutzmann, G.E., Leissring, M.A., LaFerla, F.M., & Parker, I. Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nat. Biotechnol. 19, 645–649 (2001).

    Article  CAS  Google Scholar 

  7. Dunn, G.A., Dobbie, I.M., Monypenny, J., Holt, M.R. & Zicha, D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microsc. 205, 109–112 (2002).

    Article  CAS  Google Scholar 

  8. Lukyanov, K.A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).

    Article  CAS  Google Scholar 

  9. Yang, F., Moss, L.G. & Phillips, G.N. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  10. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  Google Scholar 

  11. Wall, M.A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138 (2000).

    Article  CAS  Google Scholar 

  12. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V. & Remington, S.J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0 Å resolution. Proc. Natl. Acad. Sci. USA 98, 462–467 (2001).

    Article  CAS  Google Scholar 

  13. Bulina, M., Chudakov, D., Mudrik, N. & Lukyanov, K. Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochem. 3, 7 (2002).

    Article  Google Scholar 

  14. Yanushevich, Y.G. et al. A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett. 511, 11–14 (2002).

    Article  CAS  Google Scholar 

  15. Keller, R. et al. Mechanisms of convergence and extension by cell intercalation. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 897–922 (2000).

    Article  CAS  Google Scholar 

  16. Condeelis, J.S., Wyckoff, J. & Segall, J.E. Imaging of cancer invasion and metastasis using green fluorescent protein. Eur. J. Cancer 36, 1671–1680 (2000).

    Article  CAS  Google Scholar 

  17. Vajkoczy, P., Ullrich, A. & Menger, M.D. Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia 2, 53–61 (2000).

    Article  CAS  Google Scholar 

  18. Parish, C.R. Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol. Cell Biol. 77, 499–508 (1999).

    Article  CAS  Google Scholar 

  19. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 11, 7877–7882 (2002).

    Article  Google Scholar 

  20. Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  21. Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 13, 1873–1877 (2002).

    Article  Google Scholar 

  22. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656 (2002).

    Article  CAS  Google Scholar 

  23. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  24. Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland, Amsterdam, 1967).

    Google Scholar 

  25. Patterson, G., Day, R. & N. Piston D. Fluorescent protein spectra. J. Cell Sci. 114, 837–838 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A.V. Feofanov (Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry RAS) for valuable help in intracellular fluorescence kindling technique development. This work was supported by the Russian Foundation for Basic Research (grant 01-04-49037), the Russian Foundation for Support of Domestic Science grant to S.A.L., and by grants from HHMI (55000344), FIRCA, and CRDF (RB1-2406-MO-02) to A.G.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin A. Lukyanov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudakov, D., Belousov, V., Zaraisky, A. et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21, 191–194 (2003). https://doi.org/10.1038/nbt778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing