Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

An efficient protein complex purification method for functional proteomics in higher eukaryotes

Abstract

The ensemble of expressed proteins in a given cell is organized in multiprotein complexes1,2. The identification of the individual components of these complexes is essential for their functional characterization. The introduction of the 'tandem affinity purification' (TAP) methodology substantially improved the purification and systematic genome-wide characterization of protein complexes in yeast1,3,4. The use of this approach in higher eukaryotic cells has lagged behind its use in yeast because the tagged proteins are normally expressed in the presence of the untagged endogenous version, which may compete for incorporation into multiprotein complexes. Here we describe a strategy in which the TAP approach is combined with double-stranded RNA interference (RNAi)5,6 to avoid competition from corresponding endogenous proteins while isolating and characterizing protein complexes from higher eukaryotic cells. This strategy allows the determination of the functionality of the tagged protein and increases the specificity and the efficiency of the purification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection of the Dm exosome.
Figure 2: Selection of a tetrameric complex involved in mRNA nuclear export.
Figure 3: Selection of proteins associating with MGN-Y14 dimers.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ho et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Puig, O. et al. The tandem affinity purification (tap) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitchell, P. & Tollervey, D. Musing on the structural organization of the exosome complex. Nat. Struct. Biol. 10, 843–846 (2000).

    Article  Google Scholar 

  8. van Hoof, A & Parker, R. The exosome: a proteasome for RNA? Cell 99, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Conti, E. & Izaurralde, E. Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol. 13, 310–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Katahira, J. et al. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 18, 2593–2609 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herold, A., Klimenko, T. & Izaurralde, E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA 7, 1768–1780 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fribourg, S., Braun, I.C., Izaurralde, E. & Conti, E. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol. Cell. 3, 645–656 (2001).

    Article  Google Scholar 

  13. Bachi, A. et al. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 6, 136–158 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palacios, I.M. RNA processing: splicing and the cytoplasmic localization of mRNA. Curr. Biol. 12, R50–R52 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Le Hir, H., Gatfield, D., Braun, I.C., Forler, D. & Izaurralde, E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2, 1119–1124 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tuschl, T. Expanding small RNA interference. Nat. Biotechnol. 20, 446–448 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Benting, J., Lecat, S., Zacchetti, D. & Simons, K. Protein expression in Drosophila Schneider cells. Anal. Biochem. 278, 59–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Dignam, D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids. Res. 11, 1475–1489 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Wilm, M., Neubauer, G. & Mann, M. Parent ion scans of unseparated peptide mixtures. Anal. Chem. 68, 527–533 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Mann, M. & Wilm, M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the European Molecular Biology Organization (EMBO) and by the Bundesministerium für Bildung und Forschung (BMBF), BioFuture grant no 0311862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wilm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forler, D., Köcher, T., Rode, M. et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol 21, 89–92 (2003). https://doi.org/10.1038/nbt773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing