Abstract
Regulatable transgene systems providing easily controlled, conditional induction or repression of expression are indispensable tools in biomedical and agricultural research and biotechnology. Several such systems have been developed for eukaryotes1,2,3,4,5,6. Most of these rely on the administration of either exogenous chemicals or heat shock. Despite the general success of many of these systems, the potential for problems, such as toxic, unintended, or pleiotropic effects of the inducing chemical or treatment, can impose limitations on their use. We have developed a promoter system that can be induced, rapidly and reversibly, by short pulses of light. This system is based on the known red light–induced binding of the plant photoreceptor phytochrome to the protein PIF3 and the reversal of this binding by far-red light7,8. We show here that yeast cells expressing two chimeric proteins, a phytochrome–GAL4-DNA-binding-domain fusion and a PIF3–GAL4-activation-domain fusion, are induced by red light to express selectable or “scorable” marker genes containing promoters with a GAL4 DNA-binding site, and that this induction is rapidly abrogated by subsequent far-red light. We further show that the extent of induction can be controlled precisely by titration of the number of photons delivered to the cells by the light pulse. Thus, this system has the potential to provide rapid, noninvasive, switchable control of the expression of a desired gene to a preselected level in any suitable cell by simple exposure to a light signal.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Blau, H.M. & Rossi, F.M.V. Tet B or not tet B: advances in tetracycline-inducible gene expression. Proc. Natl. Acad. Sci. USA 96, 797–799 (1999).
Gatz, C. Chemically inducible promoters in transgenic plants. Curr. Opin. Biotech. 7, 168–172 (1996).
Gatz, C. Chemical control of gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 89–108 (1997).
Lewandoski, M. Conditional control of gene expression in the mouse. Nature Rev. Genet. 2, 743–755 (2001).
Mills, A.A. Changing colors in mice: an inducible system that delivers. Genes Dev. 15, 1461–1467 (2001).
Roslan, H.A. et al. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28, 225–235 (2001).
Ni, M., Tepperman, J.M. & Quail, P.H. Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature 400, 781–784 (1999).
Zhu, Y., Tepperman, J.M., Fairchild, C.D. & Quail, P.H. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc. Natl. Acad. Sci. USA 97, 13419–13424 (2000).
Quail, P.H. Phytochrome photosensory signalling networks. Nature Rev. Mol. Cell Biol. 3, 85–93 (2002).
Quail, P.H. An emerging molecular map of the phytochromes. Plant Cell Environ. 20, 657–665 (1997).
Phizicky, E.M. & Fields, S. Protein-protein interactions: methods for detection and analysis. Microbiol. Rev. 59, 94–123 (1995).
Gambetta, G.A. & Lagarias, J.C. Genetic engineering of phytochrome biosynthesis in bacteria. Proc. Natl. Acad. Sci. USA 98, 10566–10571 (2001).
Smith, H. & Jackson, G.M. Rapid phytochrome regulation of wheat seedling extension. Plant Physiol. 84, 1059–1062 (1987).
Ronicke, V., Graulich, W., Mumberg, D., Muller, R. & Funk, M. Use of conditional promoters for expression of heterologous proteins in Saccharomyces cerevisiae. Meth. Enzymol. 283, 313–322 (1997).
Parks, B.M. & Quail, P.H. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3, 1177–1186 (1991).
Boylan, M.T. & Quail, P.H. Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc. Natl. Acad. Sci. USA 88, 10806–10810 (1991).
Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).
Scheer, H. Model compounds for the phytochrome chromophore. in Techniques in photomorphogenesis. (eds Smith, H. & Holmes, M.G.) 227–256 (Academic Press, New York, 1984).
James, P., Halliaday, J. & Craig, E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).
Parks, B.M. & Quail, P.H. hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5, 39–48 (1993).
Acknowledgements
We thank the members of our laboratory for support and discussions. This work was supported by grants from the Department of Energy Basic Energy Sciences (number DE-FG03-87ER13742), the National Institutes of Health (number GM47475), and the US Department of Agriculture Current Research Information Service (number 5335-21000-010-00D).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Shimizu-Sato, S., Huq, E., Tepperman, J. et al. A light-switchable gene promoter system. Nat Biotechnol 20, 1041–1044 (2002). https://doi.org/10.1038/nbt734
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nbt734
This article is cited by
-
In vivo imaging of inflammatory response in cancer research
Inflammation and Regeneration (2023)
-
Controlling cellular activities with light
Nature Methods (2023)
-
Structural and photophysical characterization of the small ultra-red fluorescent protein
Nature Communications (2023)
-
Zelluläre Lichtschalter für die Biotechnologie
BIOspektrum (2023)
-
Towards translational optogenetics
Nature Biomedical Engineering (2022)