Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering soluble proteins for structural genomics

Abstract

Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein solubility and fluorescence measurements.
Figure 2: The NDP kinase fold.
Figure 3: The nucleotide binding site.
Figure 4: The dimer interface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Christendat, D. et al. Structural proteomics: prospects for high throughput sample preparation. Prog. Biophys. Mol. Biol. 73, 339–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Gaasterland, T. Archaeal genomics. Curr. Opin. Microbiol. 2, 542–547 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Makrides, S.C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512–538 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Armstrong, N., De Lencastre, A. & Gouaux, E. A new protein folding screen: application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Protein Sci. 8, 1475–1483 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rudolph, R. & Lilie, H. In vitro folding of inclusion body proteins. Faseb J. 10, 49–56 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Waldo, G.S., Standish, B.M., Berendzen, J. & Terwilliger, T.C. Rapid protein-folding assay using green fluorescent protein. Nat. Biotechnol. 17, 691–695 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, C.A. et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J. 20, 4173–4182 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skinner, M.M. & Terwilliger, T.C. Potential use of additivity of mutational effects in simplifying protein engineering. Proc. Natl. Acad. Sci. USA 93, 10753–10757 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heinz, D.W., Baase, W.A. & Matthews, B.W. Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence. Proc. Natl. Acad. Sci. USA 89, 3751–3755 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Porath, J. Immobilized metal ion affinity chromatography. Prot. Exp. Purif. 3, 263–281 (1992).

    Article  CAS  Google Scholar 

  11. Hagel, L., Lundstrom, H., Andersson, T. & Lindblom, H. Properties; in theory and practice; of novel gel-filtration media for standard liquid-chromatography. J. Chromato. 476, 329–344 (1989).

    Article  CAS  Google Scholar 

  12. Janin, J. et al. Three-dimensional structure of nucleoside diphosphate kinase. J. Bioenerg. Biomemb. 32, 215–225 (2000).

    Article  CAS  Google Scholar 

  13. Stemmer, W.P.C. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. De la Rosa, A., Williams, R.L. & Steeg, P.S. Nm23/nucleoside diphosphate kinase: toward a structural and biochemical understanding of its biological functions. Bioessays 17, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Lascu, I. & Gonin, P. The catalytic mechanism of nucleoside diphosphate kinases. J. Bioenerg. Biomemb. 32, 237–246 (2000).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Morera, S., Lacombe, M.L., Xu, Y.W., Lebras, G. & Janin, J. X-ray structure of human nucleoside diphosphate kinase B complexed with GDP at 2 Å resolution. Structure 3, 1307–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Karamohamed, S., Nordstrom, T. & Nyren, P. Real-time bioluminometric method for detection of nucleoside diphosphate kinase activity. Biotechniques 26, 728 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Cherfils, J., Morera, S., Lascu, I., Veron, M. & Janin, J. X-ray structure of nucleoside diphosphate kinase complexed with thymidine diphosphate and Mg2+ at 2 Å resolution. Biochemistry 33, 9062–9069 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Dale, G.E., Broger, C., Langen, H., Darcy, A. & Stuber, D. Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. Protein Eng. 7, 933–939 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Williams, R.L. et al. Crystal structure of Myxococcus xanthus nucleoside diphosphate kinase and its interaction with a nucleotide substrate at 2 Å resolution. J. Mol. Biol. 234, 1230–1247 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Lascu, I., Giartosio, A., Ransac, S. & Erent, M. Quaternary structure of nucleoside diphosphate kinases. J. Bioenerg. Biomemb. 32, 227–236 (2000).

    Article  CAS  Google Scholar 

  23. Lacombe, M.L., Milon, L., Munier, A., Mehus, J.G. & Lambeth, D.O. The human Nm23/nucleoside diphosphate kinases. J. Bioenerg. Biomemb. 32, 247–258 (2000).

    Article  CAS  Google Scholar 

  24. Yang, J.K. et al. Crystallization and preliminary X-ray crystallographic analysis of the Rv2002 gene product from Mycobacterium tuberculosis, a β-ketoacyl carrier protein reductase homologue. Acta Crystallogr. D. Biol. Crystallogr. 58, 303–305 (2002).

    Article  PubMed  Google Scholar 

  25. Trivedi, V.D., Raman, B., Ramakrishna, T. & Rao, C.M. Detection and assay of proteases using calf lens β-crystallin aggregate as substrate. J. Biochem. Biophys. Meth. 40, 49–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Collaborative Computational Project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 50, 760–763 (1994).

  28. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D. Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Terwilliger, T.C. Reciprocal-space solvent flattening. Acta Crystallogr. D. Biol. Crystallogr. 55, 1863–1871 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D. Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  32. Merritt, E.A. & Bacon, D.J. Photorealistic molecular graphics. Meth. Enzym. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Leon Flaks for his assistance in performing data collection. We also thank James Jett, Andrew Bradbury, and Kathleen Sandman for review of the manuscript, and the National Institutes of Health and University of California Campus Laboratory Collaboration Program for generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey S. Waldo.

Ethics declarations

Competing interests

The authors have filed pending US patent application 09/410,889, “Method for determining and improving peptide/protein solubility.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pédelacq, JD., Piltch, E., Liong, E. et al. Engineering soluble proteins for structural genomics. Nat Biotechnol 20, 927–932 (2002). https://doi.org/10.1038/nbt732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing