Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays

Abstract

We have used DNA microarrays to follow Neisseria meningitidis serogroup B (MenB) gene regulation during interaction with human epithelial cells. Host-cell contact induced changes in the expression of 347 genes, more than 30% of which encode proteins with unknown function. The upregulated genes included transporters of iron, chloride, amino acids, and sulfate, many virulence factors, and the entire pathway of sulfur-containing amino acids. Approximately 40% of the 189 upregulated genes coded for peripherally located proteins, suggesting that cell contact promoted a substantial reorganization of the cell membrane. This was confirmed by fluorescence activated cell sorting (FACS) analysis on adhering bacteria using mouse sera against twelve adhesion-induced proteins. Of the 12 adhesion-induced surface antigens, 5 were able to induce bactericidal antibodies in mice, demonstrating that microarray technology is a valid approach for identifying new vaccine candidates and nicely complements other genome mining strategies used for vaccine discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetics of adhesion, growth, and gene expression in MenB.
Figure 2: Remodeling of surface-associated antigens in epithelial cell–adhering bacteria.
Figure 3: FACS analysis of MC58 gene deletion mutants.
Figure 4: Schematic representation of amino-acid sequence variability within N. meningitidis of the five antigens reported in Table 3.

Similar content being viewed by others

References

  1. Gotschlich, E.C., Liu, T.Y. & Artenstein, M.S. Human immunity to the meningococcus. 3. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides. J. Exp Med. 129, 1349–1365 (1969).

    Article  CAS  Google Scholar 

  2. Naess, A. et al. Sequelae one year after meningococcal disease. Acta Neurol. Scand. 89, 139–142 (1994).

    Article  CAS  Google Scholar 

  3. Nassif, X., Pujol, C., Morand, P. & Eugène, E. Interaction of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol. Microbiol. 32, 1121–1132 (1999).

    Article  Google Scholar 

  4. Merz, A.J. & So, M. Interaction of pathogenic Neisseriae with epithelial cell membranes. Annu. Rev. Cell. Dev. Biol. 16, 423–457 (2000).

    Article  CAS  Google Scholar 

  5. Mahan, M.J., Slauch, J.M. & Mekalanos, J.J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259, 686–688 (1993).

    Article  CAS  Google Scholar 

  6. Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995).

    Article  CAS  Google Scholar 

  7. Schena, M., Shalon, D., Davs, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  8. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).

    Article  CAS  Google Scholar 

  9. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

    Article  CAS  Google Scholar 

  10. Sun, Y.-H., Bakshi, S., Chalmers, R. & Tang, C.M. Functional genomics of Neisseria meningitidis pathogenesis. Nat. Med. 6, 1269–1273 (2000).

    Article  CAS  Google Scholar 

  11. Zollinger, W.D. New and improved vaccines against meningococcal disease. in New Generation Vaccines (eds Levine, M.M., Wodrow, G.C., Kaper, J.B. & Cobon, G.S.) 469–488 (Dekker, New York, 1997).

    Google Scholar 

  12. Martin, D., Cadieux, N., Hamel, J. & Brodeur, B.R. Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J. Exp. Med. 185, 1173–1183 (1997).

    Article  CAS  Google Scholar 

  13. Pizza, M.G. et al. Whole genome sequencing to identify vaccines candidates against serogroup B meningococcus. Science 287, 1816–1820 (2000).

    Article  CAS  Google Scholar 

  14. Pujol, C., Eugène, E., de Saint Martin, L. & Nassif, X. Interaction of Neisseria meningitidis with a polarized monolayer of epithelial cells. Infect. Immun. 65, 4836–4842 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Deghmane, Al.-E. et al. Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel Lys-R type transcriptional regulator. EMBO J. 19, 1068–1078 (2000).

    Article  CAS  Google Scholar 

  16. Pujol, C., Eugène, E., Marceau, M. & Nassif, X. The meningococcal pilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. Proc. Nat. Acad. Sci. USA 96, 4017–4022 (1999).

    Article  CAS  Google Scholar 

  17. Shea, J.E., Santangelo, J.D. & Feldman, R. Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr. Opin. Microbiol. 3, 451–458 (2000).

    Article  CAS  Google Scholar 

  18. Saunders, N.J. et al. Repeat–associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol. Microbiol. 37, 207–215 (2000).

    Article  CAS  Google Scholar 

  19. Braaten, B., Nou, Y., Kaltenbach, L. & Low, D. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76, 577–588 (1994).

    Article  CAS  Google Scholar 

  20. Heithoff, D.M., Sinsheimer, R.L., Low, D.A. & Mahan, M.J. An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967–970 (1999).

    Article  CAS  Google Scholar 

  21. Garcia-Del Portillo, F., Pucciarelli, M.G. & Casadesus, J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl. Acad. Sci. USA 96, 11578–11583 (1999).

    Article  CAS  Google Scholar 

  22. Klebanoff, S.J., Locksley, R.M., Jong, E.C. & Rosen, H. Oxidative response of phagocytes to parasitic invasion. Ciba Found. Symp. 99, 92–112 (1983).

    CAS  PubMed  Google Scholar 

  23. Ramarao, N., Gray-Owen, S.D. & Meyer, T.F. Helicobacter pylori induces but survives the extracellular release of oxygen radicals from professional phagocytes using its catalase activity. Mol. Microbiol. 38, 103–113 (2000).

    Article  CAS  Google Scholar 

  24. Lottenberg, R. et al. Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J. Bacteriol. 174, 5204–5210 (1992).

    Article  CAS  Google Scholar 

  25. De Matteis, M.A. et al. Stimulation of endogenous ADP-ribosylation by brefeldin A. Proc. Natl. Acad. Sci. USA 91, 1114–1118 (1994).

    Article  CAS  Google Scholar 

  26. Pancholi, V. & Fischetti, V.A. Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: signal transduction between streptococci and pharyngeal cells. J. Exp. Med. 186, 1633–1643 (1997).

    Article  CAS  Google Scholar 

  27. Winram, S.B. & Lottemberg, R. The plasmin-binding protein Plr of group A streptococci is identified as glyceraldheyde-3-phosphate dehydrogenase. Microbiology 142, 2311–2320 (1996).

    Article  CAS  Google Scholar 

  28. Zhang, Y.L., Ong, C.T. & Leung, K.Y. Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. Microbiology 146, 999–1009 (2000).

    Article  CAS  Google Scholar 

  29. Zhang, H.Z. & Donnenberg, M.S. DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli. Mol. Microbiol. 21, 787–797 (1996).

    Article  CAS  Google Scholar 

  30. Yu, I., Edwards-Jones, B., Neyrolles, O. & Kroll, J.S. Key role for DsbA in cell-to-cell spread of Shigella flexneri, permitting secretion of Ipa proteins to interepithelial protrusions. Infect. Immun. 68, 6449–6456 (2000).

    Article  CAS  Google Scholar 

  31. Susa, M., Hacker, J. & Marre, R. De novo synthesis of Legionella pneumophila antigens during intracellular growth in phagocytic cells. Infect. Immun. 64, 1679–1684 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wintemeyer, E. et al. Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells. Infect. Immun. 63, 4576–4583 (1995).

    Google Scholar 

  33. Horne, S.M., Kottom, T.J., Nolan, L.K. & Young, K.D. Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen. Infec. Immun. 65, 806–810 (1997).

    CAS  Google Scholar 

  34. Adegbola, R.A., Mulholland, E.K., Secka, O., Jaffar, S. & Greenwood, B.M. Vaccination with a Haemophilus influenzae Type b conjugate vaccine reduces oropharyngeal carriage of H. influenzae Type b among Gambian children. J. Infec. Immun. 177, 1758–1761 (1998).

    CAS  Google Scholar 

  35. Dagan, R. et al. Reduction of nasopharyngeal carriage of Streptococcus pneumoniae after administration of a 9-valent pneumococcal conjugate vaccine to toddlers attending day care centers. J. Infec. Dis. 185, 927–936 (2002).

    Article  Google Scholar 

  36. Grandi, G. Antibacterial vaccine design using genomics and proteomics. Trends Biotechnol. 19, 181–188 (2001).

    Article  CAS  Google Scholar 

  37. Cummings, C.A. & Relman, D.A. Using DNA microarrays to study host microbe interaction. Emerg. Infect. Dis. 6, 513–522 (2000).

    Article  CAS  Google Scholar 

  38. Belcher, C.E. et al. The transcriptional response of respiratory epithelial cells to Berdetella pertussis reveal host defensive and pathogen counter defensive strategies. Proc. Natl. Acad. Sci. USA 97, 13847–13857 (2000).

    Article  CAS  Google Scholar 

  39. Rappuoli, R. Pushing the limits of cellular microbiology: microarrays to study bacteria-host cell intimate contacts. Proc. Natl. Acad. Sci. USA 97, 13468–13469 (2000).

    Article  Google Scholar 

  40. Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol. 3, 445–450 (2000).

    Article  CAS  Google Scholar 

  41. Mathiassen, S., Lauemoller, S.L., Ruhwald, M., Claesson, M.H. & Buus, S. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity. Eur. J. Immunol. 31, 1239–1246 (2001).

    Article  CAS  Google Scholar 

  42. Etz, H. et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 99, 6573–6578 (2002).

    Article  CAS  Google Scholar 

  43. Long, A.D. et al. Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J. Biol. Chem. 276, 19937–19944 (2001).

    Article  CAS  Google Scholar 

  44. Trieu-Cuot, P., Poyart-Salmeron, C., Carlier, C. & Courvalin, P. Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Res. 18, 3660 (1990).

    Article  CAS  Google Scholar 

  45. Trieu-Cuot, P., Gerbaud, G., Lambert, T. & Courvalin, P. In vivo transfer of genetic information between gram-positive and gram-negative bacteria. EMBO J. 4, 3583–3587 (1985).

    Article  CAS  Google Scholar 

  46. Peeters, C.C. et al. Immunogenicity of various presentation forms of PorA outer membrane protein of Neisseria meningitidis in mice. Vaccine 17, 2702–2712 (1999).

    Article  CAS  Google Scholar 

  47. Seiler, A., Reichardt, R., Sarkari, J., Caugant, D.A. & Achtman, M. Allelic polymorphism and site specific recombination in the opc locus of Neisseria meningitids. Mol. Microbiol. 19, 841–856 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Telford for the critical reading of the manuscript and R. Moxon and D.A. Caugant for providing bacterial strains. We also thank M. Comanducci for providing genomic DNAs, V. Masignani, M. Scarselli, and R. Beltrami for assistance in computer analysis, S. Censini and S. Guidotti for nucleotide sequencing, G. Corsi for artwork, and A. Maiorino for expert secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Grandi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grifantini, R., Bartolini, E., Muzzi, A. et al. Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol 20, 914–921 (2002). https://doi.org/10.1038/nbt728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing