What would you do if you could sequence everything?

Abstract

It could be argued that the greatest transformative aspect of the Human Genome Project has been not the sequencing of the genome itself, but the resultant development of new technologies. A host of new approaches has fundamentally changed the way we approach problems in basic and translational research. Now, a new generation of high-throughput sequencing technologies promises to again transform the scientific enterprise, potentially supplanting array-based technologies and opening up many new possibilities. By allowing DNA/RNA to be assayed more rapidly than previously possible, these next-generation platforms promise a deeper understanding of genome regulation and biology. Significantly enhancing sequencing throughput will allow us to follow the evolution of viral and bacterial resistance in real time, to uncover the huge diversity of novel genes that are currently inaccessible, to understand nucleic acid therapeutics, to better integrate biological information for a complete picture of health and disease at a personalized level and to move to advances that we cannot yet imagine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The number of publications with keywords for nucleic acid detection and sequencing technologies.
Figure 2: Relative sample and data throughputs for different nucleic acid detection and sequencing technologies.
Figure 3: What can high-throughput sequencing do for you?

References

  1. 1

    Bentley, D.R. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16, 545–552 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Church, G.M. Genomes for all. Sci. Am. 294, 46–54 (2006).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Zwolak, M. & DiVentra, M. Physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008).

    Article  Google Scholar 

  4. 4

    Mardis, E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Harris, T.D. et al. Single-Molecule DNA Sequencing of a Viral Genome. Science 320, 106–109 (2008).

    CAS  Article  Google Scholar 

  6. 6

    International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  7. 7

    Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

  8. 8

    Hillier, L.W. et al. Whole-genome sequencing and variant discovery in C. elegans . Nat. Methods 5, 183–188 (2008).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Wheeler, D.A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Millar, C.D., Huynen, L., Subramanian, S., Mohandesan, E. & Lamber, D.M. New developments in ancient genomics. Trends Ecol. Evol. 23, 386–393 (2008).

    Article  PubMed  Google Scholar 

  11. 11

    Ellegren, H. & Sheldon, B.C. Genetic basis of fitness differences in natural populations. Nature 452, 169–175 (2008).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Kruglyak, L. The road to genome-wide association studies. Nat. Rev. Genet. 9, 314–318 (2008).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  15. 15

    International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  16. 16

    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  17. 17

    Broadbent, H.M. et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum. Mol. Genet. 17, 806–814 (2008).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Ke, X., Taylor, M.S. & Cardon, L.R. Singleton SNPs in the human genome and implications for genome-wide association studies. Eur. J. Hum. Genet. 16, 506–515 (2008).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Cohen, J.C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872 (2004).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    McClellan, J.M., Susser, E. & King, M.-C. Schizophrenia: a common disease caused by multiple rare alleles. Br. J. Psychol. 190, 194–199 (2007).

    Article  Google Scholar 

  21. 21

    Speicher, M.R. & Carter, N.P. The new cytogenetics: blurring the boundaries with molecular biology. Nat. Rev. Genet. 6, 782–792 (2005).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Freeman, J.L. et al. Copy number variation: new insights in genome diversity. Genome Res. 16, 949–961 (2006).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Komura, D. et al. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res. 16, 1575–1584 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Feuk, L., Marshall, C.R., Wintle, R.F., & Scherer, S.W. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum. Mol. Genet. 15 Spec No 1, R57–R66 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    McCarroll, S.A. & Althshuler, D.M. Copy-number variation and association studies of human disease. Nat. Genet. 39, S37–S42 (2008).

    Article  CAS  Google Scholar 

  29. 29

    Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  Google Scholar 

  30. 30

    Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Chittenden, T. et al. Functional Classification Analysis of Somatically Mutated Genes in Human Breast and Colorectal Cancers. Genomics 91, 508–511 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Tomlins, S.A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Nardi, V. et al. Quantitative monitoring by polymerase colony assay of known mutations resistant to ABL kinase inhibitors. Oncogene 27, 775–782 (2008).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Hoffmann, C. et al. DNA bar coding and pyrosequencing to identify rare HIV drug resistance mutations. Nucleic Acids Res. 35, e91 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Wang, C., Mitsuya, Y., Gharizadeh, B., Ronaghi, M. & Shafer, R.W. Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res. 17, 1195–1201 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Loman, N.J. & Pallen, M.J. XDR-TB genome sequencing: a glimpse of the microbiology of the future. Future Microbiol. 3, 111–113 (2008).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Holt, K.E. et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat. Genet. 40, 987–993 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Feng, H., Shuda, M., Chang, Y. & Moore, P.S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2007).

    Article  CAS  Google Scholar 

  39. 39

    Palacios, G. et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N. Engl. J. Med. 358, 991–998 (2008).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Cox-Foster, D.L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Woyke, T. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl. Acad. Sci. USA 104, 11889–11894 (2007).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Pernthaler, A. et al. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc. Natl. Acad. Sci. USA 105, 7052–7057 (2008).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Dinsdale, E.A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Bundy, J.G. et al. 'Systems toxicology' approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus . BMC Biol. 6, 25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    van Straalen, N.M. & Roelofs, D. Genomics technology for assessing soil pollution. J. Biol. 7, 19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Rauch, T.A. et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc. Natl. Acad. Sci. USA 105, 252–257 (2007).

    Article  PubMed  Google Scholar 

  49. 49

    Yasui, D.H. et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl. Acad. Sci. USA 104, 19416–19421 (2007).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Beck, S. & Rakyan, V.K. The methylome: approaches for global DNA methylation profiling. Trends Genet. 24, 231–237 (2008).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Gitan, R.S., Shi, H., Chen, C.M., Yan, P.S. & Huang, T.H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12, 158–164 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat. Genet. 37, 899–905 (2005).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Agrelo, R. et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc. Natl. Acad. Sci. USA 103, 8822–8827 (2006).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Brena, R.M., Huang, T.H. & Plass, C. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J. Mol. Med. 84, 365–377 (2006).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Fraga, M.F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102, 10604–10609 (2005).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Jones, P.A. & Martienssen, R. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res. 65, 11241–11246 (2005).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Garber, K. Momentum building for human epigenome project. J. Natl. Cancer Inst. 98, 84–86 (2006).

    Article  PubMed  Google Scholar 

  58. 58

    Esteller, M. The necessity of a human epigenome project. Carcinogenesis 27, 1121–1125 (2006).

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378–1385 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis . Cell 126, 1189–1201 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Kim, T.H. & Ren, B. Genome-wide analysis of protein-DNA interactions. Annu. Rev. Genomics Hum. Genet. 7, 81–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Massie, C.E. & Mills, I.G. ChIPping away at gene regulation. EMBO Rep. 9, 337–343 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Mendenhall, E.M. & Bernstein, B.E. Chromatin state maps: new technologies, new insights. Curr. Opin. Genet. Dev. 18, 109–115 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

    CAS  Article  Google Scholar 

  67. 67

    Euskirchen, G.M. et al. Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 17, 898–909 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    CAS  Article  Google Scholar 

  69. 69

    Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  Article  Google Scholar 

  70. 70

    Roh, T.Y., Wei, G., Farrell, C.M. & Zhao, K. Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Res. 17, 74–81 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Minsky, N. et al. Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat. Cell Biol. 10, 483–488 (2008).

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Meissner, A. et al. Genome-scale DNA methylation maps of pluirpotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Petersen, D. et al. Three microarray platforms: an analysis of their concordance in profiling gene expression. BMC Genomics 6, 63 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Encode Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  79. 79

    Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002).

    CAS  Article  Google Scholar 

  80. 80

    Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Kapranov, P. et al. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res. 15, 987–997 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82

    Palatnik, J.F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).

    CAS  Article  PubMed  Google Scholar 

  83. 83

    Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Abbott, A.L. et al. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans . Dev. Cell 9, 403–414 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Calin, G.A. & Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Calin, G.A. & Croce, C.M. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66, 7390–7394 (2006).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol. 10, 202–210 (2008).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Morin, R.D. et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18, 610–621 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90

    Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  Article  Google Scholar 

  91. 91

    Liang, W.S. et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol. Genomics 28, 311–322 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Myers, A.J. et al. A survey of genetic human cortical gene expression. Nat. Genet. 39, 1494–1499 (2007).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Fehlbaum, P., Guihal, C., Bracco, L. & Cochet, O. A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res. 33, e47 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Kwan, T. et al. Genome-wide analysis of transcript isoform variation in humans. Nat. Genet. 40, 225–231 (2008).

    CAS  Article  PubMed  Google Scholar 

  95. 95

    Blencowe, B.J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    CAS  Article  Google Scholar 

  97. 97

    Sun, M. et al. SAGE is far more sensitive than EST for detecting low-abundance transcripts. BMC Genomics 5, 1–4 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Hirst, M. et al. LongSAGE profiling of nine human embryonic stem cell lines. Genome Biol. 8, R113 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. 100

    Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods 5, 613–619 (2008).

    CAS  Article  Google Scholar 

  101. 101

    Shin, H. et al. Transcriptome analysis for Caenorhabditis elegans based on novel expressed sequence tags. BMC Biol. 6, 30 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Morin, R. et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45, 81–94 (2008).

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Wilhelm, B.T. et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243 (2008).

    CAS  Article  Google Scholar 

  105. 105

    Rockman, M.V. & Kruglyak, L. Genetics of global gene expression. Nat. Rev. Genet. 7, 862–872 (2006).

    CAS  Article  PubMed  Google Scholar 

  106. 106

    Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    CAS  Article  Google Scholar 

  107. 107

    Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108

    De Gobbi, M. et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312, 1215–1217 (2006).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis . Cell 133, 523–536 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Chou, C.C., Chen, C.H., Lee, T.T. & Peck, K. Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res. 32, e99 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Shendure, J. The beginning of the end for microarrays? Nat. Genet. 5, 585–586 (2008).

    CAS  Article  Google Scholar 

  112. 112

    Pop, M. & Salzburg, S.L. Bioinformatics challenges of new sequencing technology. Trends Genet. 24, 142–149 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jennifer MacArthur (Helicos BioSciences) for assistance and critical reading of the manuscript and Stephen Quake (Stanford University) for critical reading and comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Quackenbush.

Ethics declarations

Competing interests

A.K. and J.F.T. are employees and J.Q. is on the scientific advisory board of Helicos BioSciences Corp.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kahvejian, A., Quackenbush, J. & Thompson, J. What would you do if you could sequence everything?. Nat Biotechnol 26, 1125–1133 (2008). https://doi.org/10.1038/nbt1494

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing