Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells

A Corrigendum to this article was published on 01 March 2008

This article has been updated

Abstract

We previously reported the differentiation of mouse embryonic stem (ES) cells into retinal progenitors. However, these progenitors rarely differentiate into photoreceptors unless they are cultured with embryonic retinal tissues. Here we show the in vitro generation of putative rod and cone photoreceptors from mouse, monkey and human ES cells by stepwise treatments under defined culture conditions, in the absence of retinal tissues. With mouse ES cells, Crx+ photoreceptor precursors were induced from Rx+ retinal progenitors by treatment with a Notch signal inhibitor. Further application of fibroblast growth factors, Shh, taurine and retinoic acid yielded a greater number of rhodopsin+ rod photoreceptors, in addition to default cone production. With monkey and human ES cells, feeder- and serum-free suspension culture combined with Wnt and Nodal inhibitors induced differentiation of Rx+ or Mitf+ retinal progenitors, which produced retinal pigment epithelial cells. Subsequent treatment with retinoic acid and taurine induced photoreceptor differentiation. These findings may facilitate the development of human ES cell–based transplantation therapies for retinal diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Efficient generation of photoreceptor precursors from FACS-purified ES cell–derived neural retinal progenitors using a γ-secretase inhibitor.
Figure 2: Effect of DAPT treatment on retinal cells.
Figure 3: Promotion of rhodopsin+ photoreceptor differentiation with FGFs, taurine, Shh and retinoic acid.
Figure 4: Directed differentiation of RPE cells from monkey ES cells in serum- and feeder-independent cultures.
Figure 5: Retinoic acid and taurine promote differentiation into photoreceptor cells.
Figure 6: Generation of RPE cells and photoreceptors from human ES cells.

Change history

  • 26 February 2008

    In the version of this article initially published, one author’s name, the density of ES cells and the composition of RA/T medium are incorrect. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Rattner, A. & Nathans, J. Macular degeneration: recent advances and therapeutic opportunities. Nat. Rev. Neurosci. 7, 860–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Kaplan, H.J., Tezel, T.H., Berger, A.S., Wolf, M.L. & Del Priore, L.V. Human photoreceptor transplantation in retinitis pigmentosa. A safety study. Arch. Ophthalmol. 115, 1168–1172 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, M., Palmer, T.D., Takahashi, J. & Gage, F.H. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol. Cell. Neurosci. 12, 340–348 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Aramant, R.B., Seiler, M.J. & Ball, S.L. Successful cotransplantation of intact sheets of fetal retina with retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 40, 1557–1564 (1999).

    CAS  PubMed  Google Scholar 

  5. Radtke, N.D., Aramant, R.B., Seiler, M.J., Petry, H.M. & Pidwell, D. Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa. Arch. Ophthalmol. 122, 1159–1165 (2004).

    Article  PubMed  Google Scholar 

  6. MacLaren, R.E. et al. Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Haruta, M. et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest. Ophthalmol. Vis. Sci. 45, 1020–1025 (2004).

    Article  PubMed  Google Scholar 

  8. Haruta, M. et al. Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat. Neurosci. 4, 1163–1164 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Sun, G. et al. Retinal stem/progenitor properties of iris pigment epithelial cells. Dev. Biol. 289, 243–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, X., Liu, J. & Ahmad, I. Differentiation of embryonic stem cells into retinal neurons. Biochem. Biophys. Res. Commun. 297, 177–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Hirano, M. et al. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev. Dyn. 228, 664–671 (2003).

    Article  PubMed  Google Scholar 

  13. Ikeda, H. et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl. Acad. Sci. USA 102, 11331–11336 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamba, D.A., Karl, M.O., Ware, C.B. & Reh, T.A. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 103, 12769–12774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffman, L.M. & Carpenter, M.K. Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23, 699–708 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Mathers, P.H., Grinberg, A., Mahon, K.A. & Jamrich, M. The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Furukawa, T., Kozak, C.A. & Cepko, C.L. rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc. Natl. Acad. Sci. USA 94, 3088–3093 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furukawa, T., Morrow, E.M. & Cepko, C.L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, S. et al. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19, 1017–1030 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Kubo, F., Takeichi, M. & Nakagawa, S. Wnt2b inhibits differentiation of retinal progenitor cells in the absence of Notch activity by downregulating the expression of proneural genes. Development 132, 2759–2770 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Jadhav, A.P., Mason, H.A. & Cepko, C.L. Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133, 913–923 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Yaron, O. et al. Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Development 133, 1367–1378 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dovey, H.F. et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J. Neurochem. 76, 173–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Geling, A. et al. A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3, 688–694 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levine, E.M., Fuhrmann, S. & Reh, T.A. Soluble factors and the development of rod photoreceptors. Cell. Mol. Life Sci. 57, 224–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Altshuler, D. & Cepko, C. A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114, 947–957 (1992).

    CAS  PubMed  Google Scholar 

  29. Young, T.L. & Cepko, C.L. A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41, 867–879 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Hyatt, G.A. & Dowling, J.E. Retinoic acid. A key molecule for eye and photoreceptor development. Invest. Ophthalmol. Vis. Sci. 38, 1471–1475 (1997).

    CAS  PubMed  Google Scholar 

  31. McGinnis, J.F. et al. Unique retina cell phenotypes revealed by immunological analysis of recoverin expression in rat retina cells. J. Neurosci. Res. 55, 252–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Lukats, A. et al. Photopigment coexpression in mammals: comparative and developmental aspects. Histol. Histopathol. 20, 551–574 (2005).

    CAS  PubMed  Google Scholar 

  33. Bora, N., Conway, S.J., Liang, H. & Smith, S.B. Transient overexpression of the Microphthalmia gene in the eyes of Microphthalmia vitiligo mutant mice. Dev. Dyn. 213, 283–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen, M. & Arnheiter, H. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 127, 3581–3591 (2000).

    CAS  PubMed  Google Scholar 

  35. Baumer, N. et al. Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development 130, 2903–2915 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Burke, J.M. Determinants of retinal pigment epithelial cell phenotype and polarity. in The Retinal Pigment Epithelium (eds. Marmor, M.F. & Wolfensberger, T.J.) 86–102 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  37. Boulton, M. Melanin and the retinal pigment epithelium. in The Retinal Pigment Epithelium (eds. Marmor, M.F. & Wolfensberger, T.J.) 68–85 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  38. Martin, M.J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Pouton, C.W. & Haynes, J.M. Embryonic stem cells as a source of models for drug discovery. Nat. Rev. Drug Discov. 8, 605–616 (2007).

    Article  CAS  Google Scholar 

  41. Suemori, H. et al. Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev. Dyn. 222, 273–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kawasaki, H. et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl. Acad. Sci. USA 99, 1580–1585 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suemori, H. et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem. Biophys. Res. Commun. 345, 926–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Ueno, M. et al. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc. Natl. Acad. Sci. USA 103, 9554–9559 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Osakada, F. et al. Wnt signaling promotes regeneration in the retina of adult mammals. J. Neurosci. 27, 4210–4219 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mizuseki, K. et al. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc. Natl. Acad. Sci. USA 100, 5828–5833 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Su, H.L. et al. Generation of cerebellar neuron precursors from embryonic stem cells. Dev. Biol. 290, 287–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki, T. et al. Chondroitinase ABC treatment enhances synaptogenesis between transplant and host neurons in model of retinal degeneration. Cell Transplant. 16, 493–503 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Takahashi (Kyoto University, Kyoto, Japan) for providing the monkey ES cell line, H. Suemori and N. Nakatsuji (Kyoto University) for providing the human ES cell line, S. Nakagawa (RIKEN, Japan), T. Kume, H. Katsuki (Kyoto University), M. Haruta and M. Akimoto (Kyoto University Hospital) for valuable comments on this work, S. Nishikawa, M. Osawa and T. Era (RIKEN) for advice on FACS, K. Iseki and S. Yonemura (Riken) for the electron microscopic analysis, T. Yokota, A. Nomori, N. Ishibashi and A. Nishiyama for excellent technical assistance, and members of the Takahashi laboratory, the Sasai laboratory and the Akaike laboratory for discussions. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, and the Leading Project (M.T. and Y.S.). This study was also supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, and the Mochida Memorial Foundation for Medical and Pharmaceutical Research (F.O.).

Author information

Authors and Affiliations

Authors

Contributions

F.O. designed research, performed experiments, wrote the paper and provided financial support. H.I. designed research, performed experiments and wrote the paper. M.M., T.W. and K.W. performed experiments. N.Y., A.A. and Y.S. coordinated the project. M.T. provided financial support and supervised the whole project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Masayo Takahashi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Methods (PDF 3318 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Osakada, F., Ikeda, H., Mandai, M. et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26, 215–224 (2008). https://doi.org/10.1038/nbt1384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing