Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags


We describe biocompatible and nontoxic nanoparticles for in vivo tumor targeting and detection based on pegylated gold nanoparticles and surface-enhanced Raman scattering (SERS). Colloidal gold has been safely used to treat rheumatoid arthritis for 50 years, and has recently been found to amplify the efficiency of Raman scattering by 14–15 orders of magnitude. Here we show that large optical enhancements can be achieved under in vivo conditions for tumor detection in live animals. An important finding is that small-molecule Raman reporters such as organic dyes were not displaced but were stabilized by thiol-modified polyethylene glycols. These pegylated SERS nanoparticles were considerably brighter than semiconductor quantum dots with light emission in the near-infrared window. When conjugated to tumor-targeting ligands such as single-chain variable fragment (ScFv) antibodies, the conjugated nanoparticles were able to target tumor biomarkers such as epidermal growth factor receptors on human cancer cells and in xenograft tumor models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design, preparation and properties of pegylated gold nanoparticles for in vivo tumor targeting and spectroscopic detection.
Figure 2: Comparison of pegylated SERS nanoparticles and near-infrared-emitting quantum dots in the spectral region of 650–750 nm.
Figure 3: Cancer cell targeting and spectroscopic detection by using antibody-conjugated SERS nanoparticles.
Figure 4: In vivo SERS spectra obtained from pegylated gold nanoparticles injected into subcutaneous and deep muscular sites in live animals.
Figure 5: In vivo cancer targeting and surface-enhanced Raman detection by using ScFv-antibody conjugated gold nanoparticles that recognize the tumor biomarker EGFR.
Figure 6: Biodistribution data of targeted and nontargeted gold nanoparticles in major organs at 5 h after injection as measured by inductively coupled plasma-mass spectrometry (ICP-MS).


  1. 1

    Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128–4158 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Rosi, N.L. & Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Cao, Y.C., Jin, R.C. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Gao, X. et al. In-vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Nie, S.M., Xing, Y., Kim, G.J. & Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Yezhelyev, M.V. et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 7, 657–667 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Gao, X., Cui, Y.Y., Levenson, R.M., Chung, L.W.K. & Nie, S.M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Weissleder, R., Kelly, K., Sun, E.Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418–1423 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Lee, E.S., Na, K. & Bae, Y.H. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release 91, 103–113 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 24, 1–16 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Moghimi, S.M., Hunter, A.C. & Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Couvreur, P. & Vauthier, C. Nanotechnology: Intelligent design to treat complex diseases. Pharm. Res. 23, 1417–1450 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Duncan, R. Polymer conjugate as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Hood, J.D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Harisinghani, M.G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  Google Scholar 

  20. 20

    McCarthy, J.R., Kelly, K.A., Sun, E.Y. & Weissleder, R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2, 153–167 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor QDs. Nat. Biotechnol. 21, 41–46 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Rhyner, M.N. et al. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1, 209–217 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Woodle, M.C. & Lu, P.Y. Nanoparticles deliver RNAi therapy. NanoToday, 34–41 (8/2005).

  26. 26

    Medarova, Z., Pham, W., Farrar, C., Petkova, V. & Moore, A. In-vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13, 372–377 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Merchant, B. Gold, the noble metal and the paradoxes of its toxicology. Biologicals 26, 49–59 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Root, S.W., Andrews, G.A., Kniseley, R.M. & Tyor, M.P. The distribution and radiation effects of intravenously administered colloidal gold-198 in man. Cancer 7, 856–866 (1954).

    CAS  Article  Google Scholar 

  29. 29

    Paciotti, G.F., Kingston, D.G.I. & Tamarkin, L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. 67, 47–54 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Paciotti, G.F. et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169–183 (2004).

    CAS  Article  Google Scholar 

  31. 31

    James, W.D., Hirsch, L.R., West, J.L., O'Neal, P.D. & Payne, J.D. Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J. Radioanal. Nucl. Chem. 271, 455–459 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J. & Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644–10654 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R. & Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957–2976 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Nie, S.M. & Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Article  Google Scholar 

  37. 37

    Kneipp, K. et al. Single molecule detection using surface enhanced Raman scattering. Phys. Rev. Lett. 78, 1667–1670 (1997).

    CAS  Article  Google Scholar 

  38. 38

    Michaels, A.M., Nirmal, M. & Brus, L.E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Tian, J.H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Moore, B.D. et al. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat. Biotechnol. 22, 1133–1138 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Krug, J.T., Wang, G.D., Emory, S.R. & Nie, S.M. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J. Am. Chem. Soc. 121, 9208–9214 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Doering, W.E. & Nie, S.M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 75, 6171–6176 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Paez, J.G. et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    CAS  Article  Google Scholar 

  44. 44

    Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Mahmood, U. & Weissleder, R. Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther. 2, 489–496 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Wuelfing, W.P., Gross, S.M., Miles, D.T. & Murray, R.W. Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J. Am. Chem. Soc. 120, 12696–12697 (1998).

    CAS  Article  Google Scholar 

  47. 47

    Jiang, J.D., Burstein, E. & Kobayashi, H. Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface — Evidence for a charge-transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986).

    CAS  Article  Google Scholar 

  48. 48

    Gobin, A.M. et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007).

    CAS  Article  Google Scholar 

  49. 49

    Herbst, R.S. & Shin, D.M. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors — A new paradigm for cancer therapy. Cancer 94, 1593–1611 (2002).

    CAS  Article  Google Scholar 

  50. 50

    Reuter, C.W.M., Morgan, M.A. & Eckardt, A. Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. Br. J. Cancer 96, 408–416 (2007).

    CAS  Article  Google Scholar 

  51. 51

    Ntziachristos, V., Bremer, C. & Weissleder, R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208 (2003).

    PubMed  Google Scholar 

  52. 52

    Jain, R.K. Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng. 1, 241–263 (1999).

    CAS  Article  Google Scholar 

  53. 53

    Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  54. 54

    Huang, X., El-Sayed, I.H., Qian, W. & El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    CAS  Article  Google Scholar 

  55. 55

    Zhang, H.F., Maslov, K., Stoica, G. & Wang, L.H.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006).

    CAS  Article  Google Scholar 

  56. 56

    Ntziachristos, V., Ripoll, J., Wang, L.H.V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    CAS  Article  Google Scholar 

  57. 57

    Hirsch, L.R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

    CAS  Article  Google Scholar 

Download references


We are grateful to Gregory Adams at Fox Chase Cancer Center for providing the ScFv B10 plasmid construct, to H.Z. Zhang for tumor cell injection, and to Hong Yi for assistance with TEM. This work was supported by grants from the US Air Force Office Multi-University Research Initiative, the National Cancer Institute Centers of Cancer Nanotechnology Excellence (CCNE) Program (U54CA119338 to S.N.), and the National Cancer Institute SPORE Program in Head and Neck Cancer (P50CA128613 to D.M.S.). Four of us (M.D.W., G.Z.C., D.M.S. and S.N.) also acknowledge the Georgia Cancer Coalition (GCC) for distinguished cancer scholar awards. The human carcinoma cells line Tu686 was kindly provided by Peter G. Sacks (New York University College of Dentistry, New York, NY).

Author information



Corresponding author

Correspondence to Shuming Nie.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 775 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qian, X., Peng, XH., Ansari, D. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26, 83–90 (2008).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing