Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic therapies against HIV

Abstract

Highly active antiretroviral therapy prolongs the life of HIV-infected individuals, but it requires lifelong treatment and results in cumulative toxicities and viral-escape mutants. Gene therapy offers the promise of preventing progressive HIV infection by sustained interference with viral replication in the absence of chronic chemotherapy. Gene-targeting strategies are being developed with RNA-based agents, such as ribozymes, antisense, RNA aptamers and small interfering RNA, and protein-based agents, such as the mutant HIV Rev protein M10, fusion inhibitors and zinc-finger nucleases. Recent advances in T-cell–based strategies include gene-modified HIV-resistant T cells, lentiviral gene delivery, CD8+ T cells, T bodies and engineered T-cell receptors. HIV-resistant hematopoietic stem cells have the potential to protect all cell types susceptible to HIV infection. The emergence of viral resistance can be addressed by therapies that use combinations of genetic agents and that inhibit both viral and host targets. Many of these strategies are being tested in ongoing and planned clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV life cycle.

Katie Ris-Vicari

Figure 2

Katie Ris-Vicari

Figure 3: Adoptive immunotherapy strategies with gene-modified T cells and HS cells.

Katie Ris-Vicari

Similar content being viewed by others

References

  1. Deeks, S.G. Antiretroviral treatment of HIV infected adults. Br. Med. J. 332, 1489 (2006).

    Google Scholar 

  2. Phillips, A.N., Gazzard, B.G., Clumeck, N., Losso, M.H. & Lundgren, J.D. When should antiretroviral therapy for HIV be started? Br. Med. J. 334, 76–78 (2007).

    Google Scholar 

  3. Sarver, N. et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225 (1990).

    CAS  PubMed  Google Scholar 

  4. Michienzi, A. et al. RNA-mediated inhibition of HIV in a gene therapy setting. Ann. NY Acad. Sci. 1002, 63–71 (2003).

    CAS  PubMed  Google Scholar 

  5. Ngok, F.K. et al. Clinical gene therapy research utilizing ribozymes: application to the treatment of HIV/AIDS. Methods Mol. Biol. 252, 581–598 (2004).

    CAS  PubMed  Google Scholar 

  6. Bauer, G. et al. Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1–infected donors using retroviral vectors containing anti–HIV-1 genes. Blood 89, 2259–2267 (1997).

    CAS  PubMed  Google Scholar 

  7. Leavitt, M.C. et al. Transfer of an anti–HIV-1 ribozyme gene into primary human lymphocytes. Hum. Gene Ther. 5, 1115–1120 (1994).

    CAS  PubMed  Google Scholar 

  8. Chatterjee, S., Johnson, P.R. & Wong, K.K., Jr . Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science 258, 1485–1488 (1992).

    CAS  PubMed  Google Scholar 

  9. Levine, B.L. et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA 103, 17372–17377 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, X. et al. Antisense-mediated inhibition of human immunodeficiency virus (HIV) replication by use of an HIV type 1–based vector results in severely attenuated mutants incapable of developing resistance. J. Virol. 78, 7079–7088 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Held, D.M., Kissel, J.D., Patterson, J.T., Nickens, D.G. & Burke, D.H. HIV-1 inactivation by nucleic acid aptamers. Front. Biosci. 11, 89–112 (2006).

    CAS  PubMed  Google Scholar 

  12. Joshi, P.J., Fisher, T.S. & Prasad, V.R. Anti-HIV inhibitors based on nucleic acids: emergence of aptamers as potent antivirals. Curr. Drug Targets Infect. Disord. 3, 383–400 (2003).

    CAS  PubMed  Google Scholar 

  13. Symensma, T.L., Giver, L., Zapp, M., Takle, G.B. & Ellington, A.D. RNA aptamers selected to bind human immunodeficiency virus type 1 Rev in vitro are Rev responsive in vivo. J. Virol. 70, 179–187 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kohn, D.B. et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34+ cells from the bone marrow of human immunodeficiency virus-1–infected children. Blood 94, 368–371 (1999).

    CAS  PubMed  Google Scholar 

  15. Hannon, G.J. & Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    CAS  PubMed  Google Scholar 

  16. Jacque, J.M., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).

    CAS  PubMed  Google Scholar 

  17. Lee, N.S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505 (2002).

    CAS  PubMed  Google Scholar 

  18. Martinez, M.A., Clotet, B. & Este, J.A. RNA interference of HIV replication. Trends Immunol. 23, 559–561 (2002).

    CAS  PubMed  Google Scholar 

  19. Novina, C.D. et al. siRNA-directed inhibition of HIV-1 infection. Nat. Med. 8, 681–686 (2002).

    CAS  PubMed  Google Scholar 

  20. Coburn, G.A. & Cullen, B.R. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol. 76, 9225–9231 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boden, D., Pusch, O., Lee, F., Tucker, L. & Ramratnam, B. Human immunodeficiency virus type 1 escape from RNA interference. J. Virol. 77, 11531–11535 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Westerhout, E.M., Ooms, M., Vink, M., Das, A.T. & Berkhout, B. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res. 33, 796–804 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Das, A.T. et al. Human immunodeficiency virus type 1 escapes from RNA interference–mediated inhibition. J. Virol. 78, 2601–2605 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sabariegos, R., Gimenez-Barcons, M., Tapia, N., Clotet, B. & Martinez, M.A. Sequence homology required by human immunodeficiency virus type 1 to escape from short interfering RNAs. J. Virol. 80, 571–577 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson, J. & Akkina, R. CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2, 53 (2005).

    PubMed  PubMed Central  Google Scholar 

  26. Cordelier, P., Morse, B. & Strayer, D.S. Targeting CCR5 with siRNAs: using recombinant SV40-derived vectors to protect macrophages and microglia from R5-tropic HIV. Oligonucleotides 13, 281–294 (2003).

    CAS  PubMed  Google Scholar 

  27. Surabhi, R.M. & Gaynor, R.B. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J. Virol. 76, 12963–12973 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. An, D.S. et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol. Ther. 14, 494–504 (2006).

    CAS  PubMed  Google Scholar 

  29. Garred, P. et al. Dual effect of CCR5 delta 32 gene deletion in HIV-1–infected patients. Copenhagen AIDS Study Group. Lancet 349, 1884 (1997).

    CAS  PubMed  Google Scholar 

  30. Samson, M. et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    CAS  PubMed  Google Scholar 

  31. Huang. Y. et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat. Med. 2:1240–1243 (1996).

    CAS  PubMed  Google Scholar 

  32. Lapidot, T. Mechanism of human stem cell migration and repopulation of NOD/SCID and B2m null NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann. NY Acad. Sci. 938, 83–95 (2001).

    CAS  PubMed  Google Scholar 

  33. Lapidot, T. & Kollet, O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16, 1992–2003 (2002).

    CAS  PubMed  Google Scholar 

  34. Kahn, J. et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood 103, 2942–2949 (2004).

    CAS  PubMed  Google Scholar 

  35. Ariën, K.K. et al. Replicative fitness of CCR5-using and CXCR4-using human immunodeficiency virus type 1 biological clones. Virology 347, 65–74. (2006).

    PubMed  Google Scholar 

  36. Chang, L.J., Liu, X. & He, J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther. 12, 1133–1144 (2005).

    CAS  PubMed  Google Scholar 

  37. Berkhout, B. & Haasnoot, J. The interplay between virus infection and the cellular RNA interference machinery. FEBS Lett. 580, 896–902 (2006).

    Google Scholar 

  38. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    CAS  PubMed  Google Scholar 

  39. Li, M.J. et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol. Ther. 12, 900–909 (2005).

    CAS  PubMed  Google Scholar 

  40. Unwalla, H.J. et al. Novel Pol II fusion promoter directs human immunodeficiency virus type 1–inducible coexpression of a short hairpin RNA and protein. J. Virol. 80, 1863–1873 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Woffendin, C., Ranga, U., Yang, Z., Xu, L. & Nabel, G.J. Expression of a protective gene-prolongs survival of T cells in human immunodeficiency virus–infected patients. Proc. Natl. Acad. Sci. USA 93, 2889–2894 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lobato, M.N. & Rabbitts, T.H. Intracellular antibodies as specific reagents for functional ablation: future therapeutic molecules. Curr. Mol. Med. 4, 519–528 (2004).

    CAS  PubMed  Google Scholar 

  43. Marasco, W.A., LaVecchio, J. & Winkler, A. Human anti–HIV-1 tat sFv intrabodies for gene therapy of advanced HIV-1-infection and AIDS. J. Immunol. Methods 231, 223–238 (1999).

    CAS  PubMed  Google Scholar 

  44. Poluri, A., van Maanen, M. & Sutton, R.E. Genetic therapy for HIV/AIDS. Expert Opin. Biol. Ther. 3, 951–963 (2003).

    CAS  PubMed  Google Scholar 

  45. Schroers, R., Davis, C.M., Wagner, H.J. & Chen, S.Y. Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Ther. 9, 889–897 (2002).

    CAS  PubMed  Google Scholar 

  46. Yang, A.G., Bai, X., Huang, X.F., Yao, C. & Chen, S. Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection. Proc. Natl. Acad. Sci. USA 94, 11567–11572 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Egelhofer, M. et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J. Virol. 78, 568–575 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Perez, E.E., Riley, J.L., Carroll, R.G., von Laer, D. & June, C.H. Suppression of HIV-1 infection in primary CD4 T cells transduced with a self-inactivating lentiviral vector encoding a membrane expressed gp41-derived fusion inhibitor. Clin. Immunol. 115, 26–32 (2005).

    CAS  PubMed  Google Scholar 

  49. Mani, M., Kandavelou, K., Dy, F.J., Durai, S. & Chandrasegaran, S. Design, engineering, and characterization of zinc finger nucleases. Biochem. Biophys. Res. Commun. 335, 447–457 (2005).

    CAS  PubMed  Google Scholar 

  50. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    CAS  PubMed  Google Scholar 

  51. Levine, B.L. et al. Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science 272, 1939–1943 (1996).

    CAS  PubMed  Google Scholar 

  52. Levine, B.L. et al. Effects of CD28 costimulation on long term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J. Immunol. 159, 5921–5930 (1997).

    CAS  PubMed  Google Scholar 

  53. Carroll, R.G. et al. Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+ T cells. Science 276, 273–276 (1997).

    CAS  PubMed  Google Scholar 

  54. Bex, F. et al. Syngeneic adoptive transfer of anti–human immunodeficiency virus-1 (HIV-1)–primed lymphocytes from a vaccinated HIV-seronegative individual to his HIV-1–infected identical twin. Blood 84, 3317–3326 (1994).

    CAS  PubMed  Google Scholar 

  55. Levine, B.L. et al. Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat. Med. 8, 47–53 (2002).

    CAS  PubMed  Google Scholar 

  56. Fearon, D.T., Manders, P. & Wagner, S.D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    CAS  PubMed  Google Scholar 

  57. Barber, D.L., Wherry, E.J. & Ahmed, R. Cutting edge: rapid in vivo killing by memory CD8 T cells. J. Immunol. 171, 27–31 (2003).

    CAS  PubMed  Google Scholar 

  58. Muul, L.M. et al. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood 101, 2563–2569 (2003).

    CAS  PubMed  Google Scholar 

  59. Lund, O. et al. Gene therapy of T helper cells in HIV infection: mathematical model of the criteria for clinical effect. Bull. Math. Biol. 59, 725–745 (1997).

    CAS  PubMed  Google Scholar 

  60. von Laer, D., Hasselmann, S. & Hasselmann, K. Impact of gene-modified T cells on HIV infection dynamics. J. Theor. Biol. 238, 60–77 (2006).

    CAS  PubMed  Google Scholar 

  61. Weinberger, L.S., Schaffer, D.V. & Arkin, A.P. Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection. J. Virol. 77, 10028–10036 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lalezari, J.P. et al. A controlled phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in non-nucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir. Ther. 8, 279–287 (2003).

    CAS  PubMed  Google Scholar 

  63. van Lunzen, J. et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol. Ther. 15, 1024–1033 (2007).

    CAS  PubMed  Google Scholar 

  64. Masiero, S. et al. T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120. Gene Ther. 12, 299–310 (2005).

    CAS  PubMed  Google Scholar 

  65. Briz, V., Poveda, E. & Soriano, V. HIV entry inhibitors: mechanisms of action and resistance pathways. J. Antimicrob. Chemother. 57, 619–627 (2006).

    CAS  PubMed  Google Scholar 

  66. Strayer, D.S. et al. Current status of gene therapy strategies to treat HIV/AIDS. Mol. Ther. 11, 823–842 (2005).

    CAS  PubMed  Google Scholar 

  67. Swan, C.H. & Torbett, B.E. Can gene delivery close the door to HIV-1 entry after escape? J. Med. Primatol. 35, 236–247 (2006).

    CAS  PubMed  Google Scholar 

  68. Luis, A.J. et al. Novel interfering bifunctional molecules against the CCR5 coreceptor are efficient inhibitors of HIV-1 infection. Mol. Ther. 8, 475–484 (2003).

    Google Scholar 

  69. Swan, C.H., Buhler, B., Tschan, M.P., Barbas, C.F., III & Torbett, B.E. T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Ther. 13, 1480–1492 (2006).

    CAS  PubMed  Google Scholar 

  70. Bai, J. et al. Inhibition of Tat-mediated transactivation and HIV-1 replication by human anti-hCyclinT1 intrabodies. J. Biol. Chem. 278, 1433–1442 (2003).

    CAS  PubMed  Google Scholar 

  71. BouHamdan, M. et al. Inhibition of HIV-1 infection by down-regulation of the CXCR4 co-receptor using an intracellular single chain variable fragment against CXCR4. Gene Ther. 8, 408–418 (2001).

    CAS  PubMed  Google Scholar 

  72. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    CAS  PubMed  Google Scholar 

  73. Luban, J. & Cyclophilin, A. TRIM5, and resistance to human immunodeficiency virus type 1 infection. J. Virol. 81, 1054–1061 (2007).

    CAS  PubMed  Google Scholar 

  74. Li, Y., Li, X., Stremlau, M., Lee, M. & Sodroski, J. Removal of arginine 332 allows human TRIM5α to bind human immunodeficiency virus capsids and to restrict infection. J. Virol. 80, 6738–6744 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ranga, U. et al. Retroviral delivery of an antiviral gene in HIV-infected individuals. Proc. Natl. Acad. Sci. USA 95, 1201–1206 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Morgan, R.A. et al. Preferential survival of CD4+ T lymphocytes engineered with anti–human immunodeficiency virus (HIV) genes in HIV-infected individuals. Hum. Gene Ther. 16, 1065–1074 (2005).

    CAS  PubMed  Google Scholar 

  77. Macpherson, J.L. et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J. Gene Med. 7, 552–564 (2005).

    CAS  PubMed  Google Scholar 

  78. Amado, R.G. et al. Anti–human immunodeficiency virus hematopoietic progenitor cell–delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1–infected patients. Hum. Gene Ther. 15, 251–262 (2004).

    CAS  PubMed  Google Scholar 

  79. VandenDriessche, T. et al. Inhibition of clinical human immunodeficiency virus (HIV) type 1 isolates in primary CD4+ T lymphocytes by retroviral vectors expressing anti-HIV genes. J. Virol. 69, 4045–4052 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Veres, G. et al. Comparative analyses of intracellularly expressed antisense RNAs as inhibitors of human immunodeficiency virus type 1 replication. J. Virol. 72, 1894–1901 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Humeau, L.M. et al. Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol. Ther. 9, 902–913 (2004).

    CAS  PubMed  Google Scholar 

  82. Schroder, A.R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    CAS  PubMed  Google Scholar 

  83. Dave, U.P., Jenkins, N.A. & Copeland, N.G. Gene therapy insertional mutagenesis insights. Science 303, 333 (2004).

    PubMed  Google Scholar 

  84. Sadelain, M. Insertional oncogenesis in gene therapy: how much of a risk? Gene Ther. 11, 569–573 (2004).

    CAS  PubMed  Google Scholar 

  85. Li, M.J. et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III–promoted anti-HIV RNAs. Mol. Ther. 8, 196–206 (2003).

    CAS  PubMed  Google Scholar 

  86. Eberhardy, S.R. et al. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J. Virol. 80, 2873–2883 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med. 13, 46–53 (2007).

    CAS  PubMed  Google Scholar 

  88. Walter, E.A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).

    CAS  PubMed  Google Scholar 

  89. Heslop, H.E. et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus–specific T lymphocytes. Nat. Med. 2, 551–555 (1996).

    CAS  PubMed  Google Scholar 

  90. Brodie, S.J. et al. HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death. J. Clin. Invest. 105, 1407–1417 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wodarz, D. & Nowak, M.A. Specific therapy regimes could lead to long-term immunological control of HIV. Proc. Natl. Acad. Sci. USA 96, 14464–14469 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Roberts, M.R. et al. Targeting of human immunodeficiency virus–infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 84, 2878–2889 (1994).

    CAS  PubMed  Google Scholar 

  93. Yang, O.O. et al. Lysis of HIV-1–infected cells and inhibition of viral replication by universal receptor T cells. Proc. Natl. Acad. Sci. USA 94, 11478–11483 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Walker, R.E. et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 96, 467–474 (2000).

    CAS  PubMed  Google Scholar 

  95. Mitsuyasu, R.T. et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus–infected subjects. Blood 96, 785–793 (2000).

    CAS  PubMed  Google Scholar 

  96. Deeks, S.G. et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination anti-retroviral therapy. Mol. Ther. 5, 788–797 (2002).

    CAS  PubMed  Google Scholar 

  97. Letvin, N.L. & Walker, B.D. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat. Med. 9, 861–866 (2003).

    CAS  PubMed  Google Scholar 

  98. Cooper, L.J., Kalos, M., Lewinsohn, D.A., Riddell, S.R. & Greenberg, P.D. Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J. Virol. 74, 8207–8212 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Morgan, R.A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Holler, P.D., Lim, A.R., Cho, B.K., Rund, L.A. & Kranz, D.M. CD8 T cell transfectants that express a high affinity T cell receptor exhibit enhanced peptide-dependent activation. J. Exp. Med. 194, 1043–1052 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    CAS  PubMed  Google Scholar 

  102. Boulter, J.M. et al. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 16, 707–711 (2003).

    CAS  PubMed  Google Scholar 

  103. Shultz, L.D., Ishikawa, F. & Greiner, D.L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).

    CAS  PubMed  Google Scholar 

  104. Berges, B.K. et al. HIV-1 infection and Cd4 T cell depletion in the humanized Rag2−/−gamma c−/− (RAG-hu) mouse model. Retrovirology 3, 76 (2006).

    PubMed  PubMed Central  Google Scholar 

  105. van Baarle, D., Tsegaye, A., Miedema, F., & Akbar, A. Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol. Lett. 97, 19–29 (2005).

    CAS  PubMed  Google Scholar 

  106. June, C.H. Principles of adoptive T cell cancer therapy. J. Clin. Invest. 117, 1204–1212 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    CAS  PubMed  Google Scholar 

  108. Mazurier, F. et al. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 103, 545–552 (2004).

    CAS  PubMed  Google Scholar 

  109. Check, E. Pioneering HIV treatment would use interference and gene therapy. Nature 437, 601 (2005).

    CAS  PubMed  Google Scholar 

  110. Bahner, I. et al. Lentiviral vector transduction of a dominant-negative Rev gene into human CD34+ hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol. Ther. 15, 76–85 (2007).

    CAS  PubMed  Google Scholar 

  111. Bahner, I., Kearns, K., Hao, Q.L., Smogorzewska, M. & Kohn, D.B. Transduction of human CD34+ hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits HIV-1 replication in the myelomonocytic cells produced in long-term culture. J. Virol. 70, 4352–4360 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rosenzweig, M. et al. Intracellular immunization of rhesus CD34+ hematopoietic progenitor cells with a hairpin ribozyme protects T cells and macrophages from simian immunodeficiency virus infection. Blood 90, 4822–4831 (1997).

    CAS  PubMed  Google Scholar 

  113. Davis, B.R. et al. Targeted transduction of CD34+ cells by transdominant negative Rev-expressing retrovirus yields partial anti-HIV protection of progeny macrophages. Hum. Gene Ther. 9, 1197–1207 (1998).

    CAS  PubMed  Google Scholar 

  114. Braun, S.E. et al. Inhibition of simian/human immunodeficiency virus replication in CD4+ T cells derived from lentiviral-transduced CD34+ hematopoietic cells. Mol. Ther. 12, 1157–1167 (2005).

    CAS  PubMed  Google Scholar 

  115. Su, L. et al. Hematopoietic stem cell–based gene therapy for acquired immunodeficiency syndrome: efficient transduction and expression of RevM10 in myeloid cells in vivo and in vitro. Blood 89, 2283–2290 (1997).

    CAS  PubMed  Google Scholar 

  116. Bai, J. et al. RNA-based anti–HIV-1 gene therapeutic constructs in SCID-hu mouse model. Mol. Ther. 6, 770–782 (2002).

    CAS  PubMed  Google Scholar 

  117. Anderson, J. et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes—CCR5 ribozyme, tat-rev siRNA, and TAR decoy—in SCID-hu mouse-derived T cells. Mol. Ther. 15, 1182–1188 (2007).

    CAS  PubMed  Google Scholar 

  118. An, D.S. et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc. Natl. Acad. Sci. USA 104, 13110–13115 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zaia, J.A. et al. Autologous stem cell transplantation using retrovirus-transduced peripheral blood progenitor cells in HIV-infected persons: comparison of gene marking post-engraftment with and without myeloablative therapy. Blood 94 Suppl 1, 642a (1999).

    Google Scholar 

  120. Amado, R.G. et al. A phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum. Gene Ther. 10, 2255–2270 (1999).

    CAS  PubMed  Google Scholar 

  121. Podsakoff, G.M. et al. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34+ cells. Mol. Ther. 12, 77–86 (2005).

    CAS  PubMed  Google Scholar 

  122. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    CAS  PubMed  Google Scholar 

  123. Ott, M.G. et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1–EVI1, PRDM16 or SETBP1. Nat. Med. 12, 401–409 (2006).

    CAS  PubMed  Google Scholar 

  124. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    CAS  PubMed  Google Scholar 

  125. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    CAS  PubMed  Google Scholar 

  126. Shepherd, B.E. et al. Hematopoietic stem-cell behavior in nonhuman primates. Blood 110, 1806–1813 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Payne, K.J. & Crooks, G.M. Immune-cell lineage commitment: translation from mice to humans. Immunity 26, 674–677 (2007).

    CAS  PubMed  Google Scholar 

  128. Wong-Staal, F., Poeschla, E.M. & Looney, D.J. A controlled, phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum. Gene Ther. 9, 2407–2425 (1998).

    CAS  PubMed  Google Scholar 

  129. Kang, E.M. et al. Gene therapy–based treatment for HIV-positive patients with malignancies. J. Hematother. Stem Cell Res. 11, 809–816 (2002).

    CAS  PubMed  Google Scholar 

  130. Barrett, A.D. & Dimmock, N.J. Defective interfering viruses and infections of animals. Curr. Top. Microbiol. Immunol. 128, 55–84 (1986).

    CAS  PubMed  Google Scholar 

  131. Roux, L., Simon, A.E. & Holland, J.J. Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv. Virus Res. 40, 181–211 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Mautino, M.R. & Morgan, R.A. Inhibition of HIV-1 replication by novel lentiviral vectors expressing transdominant Rev and HIV-1 env antisense. Gene Ther. 9, 421–431 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J Rossi.

Ethics declarations

Competing interests

J.J.R. is scientific advisor to Benitec, Inc., an RNAi gene therapy company, and has patents in the field of HIV gene therapy. C.H.J. receives sponsored research grant support form Sangamo Biosciences, patents and patent applications in the field of HIV gene therapy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, J., June, C. & Kohn, D. Genetic therapies against HIV. Nat Biotechnol 25, 1444–1454 (2007). https://doi.org/10.1038/nbt1367

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing