Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification and targeting of the ROSA26 locus in human embryonic stem cells

Abstract

The derivation of human embryonic stem (hES) cells has opened new avenues for studies on human development and provided a potential source of cells for replacement therapy. To reveal the full potential of hES cells, it would be advantageous to be able to genetically alter them as is routinely done with mouse ES cells through homologous recombination. The mouse Rosa26 locus is particularly useful for genetic modification as it can be targeted with high efficiency and is expressed in most cell types tested. Here we report the identification of the human homolog of the mouse Rosa26 locus. We demonstrate targeting of a red-fluorescent protein (tdRFP) cDNA to this locus through homologous recombination and expression of this targeted reporter in multiple hES cell–derived lineages. Through recombinase-mediated cassette exchange, we show replacement of the tdRFP cDNA with other cDNAs, providing a cell line in which transgenes can be readily introduced into a broadly expressed locus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification, expression and targeting of the hROSA26 locus.
Figure 2: Morphology and differentiation of HES2.R26 cells.
Figure 3: Multilineage differentiation of HES2.R26-targeted cells in vitro.
Figure 4: Mesodermal differentiation of HES2.R26_puro cells.

Similar content being viewed by others

References

  1. Zambrowicz, B.P. et al. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Birney, E. et al. Ensembl 2006. Nucleic Acids Res. 34, D556–D561 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siegel, R.W., Jain, R. & Bradbury, A. Using an in vivo phagemid system to identify non-compatible loxP sequences. FEBS Lett. 499, 147–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Luche, H., Weber, O., Nageswara Rao, T., Blum, C. & Fehling, H.J. Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur. J. Immunol. 37, 43–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Schnutgen, F. et al. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 21, 562–565 (2003).

    Article  PubMed  Google Scholar 

  9. Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H. & Orkin, S.H. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Bouhassira, E.E., Westerman, K. & Leboulch, P. Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90, 3332–3344 (1997).

    CAS  PubMed  Google Scholar 

  11. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Zwaka, T.P. & Thomson, J.A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21, 319–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Urbach, A., Schuldiner, M. & Benvenisty, N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22, 635–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nat. Protoc. 2, 792–796 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Reubinoff, B.E. et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Johansson, B.M. & Wiles, M.V. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kennedy, M., D'Souza, S.L., Lynch-Kattman, M., Schwantz, S. & Keller, G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109, 2679–2687 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, R.H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Costa, M. et al. The hESC line Envy expresses high levels of GFP in all differentiated progeny. Nat. Methods 2, 259–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Nolden, L. et al. Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nat. Methods 3, 461–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Gerrard, L., Zhao, D., Clark, A.J. & Cui, W. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23, 124–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ma, Y., Ramezani, A., Lewis, R., Hawley, R.G. & Thomson, J.A. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 21, 111–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Muotri, A.R., Nakashima, K., Toni, N., Sandler, V.M. & Gage, F.H. Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc. Natl. Acad. Sci. USA 102, 18644–18648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy, M. & Keller, G.M. Hematopoietic commitment of ES cells in culture. Methods Enzymol. 365, 39–59 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Keller lab for their contribution and helpful discussions, Sunita D'Souza and Macarena Lynch-Kattman for an initial karyotypic analysis, John Fallon for evaluation of the histology slides and Kirsten Bomblies for assistance with the EST analysis. We would also like to thank the members of the Linden and Jessberger labs for assistance with Southern blots, the Mount Sinai flow cytometry shared research facility for cell sorting, the real time PCR core for the qPCR analysis and the histology core for assistance with the slide preparation. tdRFP was a kind gift of R. Tsien. This work was supported by National Institutes of Health grant HL80627 and P20GM075019 to G.K. S.I. was supported by a grant from the Deutsche Akademie der Naturforscher, Leopoldina, Halle. H.L. and H.J.F. are supported by Sonderforschungsbereich (SFB) 497-Projekt A7.

Author information

Authors and Affiliations

Authors

Contributions

S.I. performed the experiments in this study, H.L. and S.I. designed the targeting vector, H.L. and H.J.F. performed the electronic screen of hROSA26 transcripts, P.G. contributed to the RMCE experiments, M.K. established the hES cell cultures and mesoderm differentiation. S.I., H.L., H.J.F. and G.K. contributed to the planning and design of the project. S.I., H.L., H.J.F. and G.K. wrote the manuscript.

Corresponding author

Correspondence to Gordon Keller.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Methods (PDF 2292 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irion, S., Luche, H., Gadue, P. et al. Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25, 1477–1482 (2007). https://doi.org/10.1038/nbt1362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing