Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microscale culture of human liver cells for drug development


Tissue function depends on hierarchical structures extending from single cells (10 μm) to functional subunits (100 μm–1 mm) that coordinate organ functions. Conventional cell culture disperses tissues into single cells while neglecting higher-order processes. The application of semiconductor-driven microtechnology in the biomedical arena now allows fabrication of microscale tissue subunits that may be functionally improved1 and have the advantages of miniaturization2. Here we present a miniaturized, multiwell culture system for human liver cells with optimized microscale architecture that maintains phenotypic functions for several weeks. The need for such models is underscored by the high rate of pre-launch and post-market attrition of pharmaceuticals due to liver toxicity3. We demonstrate utility through assessment of gene expression profiles, phase I/II metabolism, canalicular transport, secretion of liver-specific products and susceptibility to hepatotoxins. The combination of microtechnology and tissue engineering may enable development of integrated tissue models in the so-called 'human on a chip'4.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Soft lithographic process to fabricate microscale liver hepatocyte cultures in a multiwell format.
Figure 2: Functional characterization of microscale liver cultures.
Figure 3: Gene expression profiling of hepatocytes in microscale liver cultures.
Figure 4: Utility of microscale liver cultures for screening of hepatotoxicity and drug interactions.

Similar content being viewed by others


  1. Voldman, J., Gray, M.L. & Schmidt, M.A. Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401–425 (1999).

    Article  CAS  Google Scholar 

  2. Khetani, S.R. & Bhatia, S.N. Engineering tissues for in vitro applications. Curr. Opin. Biotechnol. 17, 524–531 (2006).

    Article  CAS  Google Scholar 

  3. Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 4, 489–499 (2005).

    Article  CAS  Google Scholar 

  4. Viravaidya, K. & Shuler, M.L. Incorporation of 3T3–L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20, 590–597 (2004).

    Article  CAS  Google Scholar 

  5. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  6. Bhatia, S.N., Balis, U.J., Yarmush, M.L. & Toner, M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13, 1883–1900 (1999).

    Article  CAS  Google Scholar 

  7. Pritchard, J.F. et al. Making better drugs: Decision gates in non-clinical drug development. Nat. Rev. Drug Discov. 2, 542–553 (2003).

    Article  CAS  Google Scholar 

  8. Gebhardt, R. et al. New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab. Rev. 35, 145–213 (2003).

    Article  CAS  Google Scholar 

  9. Guillouzo, A. Liver cell models in in vitro toxicology. Environ. Health Perspect. 106 Suppl 2, 511–532 (1998).

    Article  CAS  Google Scholar 

  10. LeCluyse, E.L. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur. J. Pharm. Sci. 13, 343–368 (2001).

    Article  CAS  Google Scholar 

  11. Sivaraman, A. et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6, 569–591 (2005).

    Article  CAS  Google Scholar 

  12. Hewitt, N.J. et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab. Rev. 39, 159–234 (2007).

    Article  CAS  Google Scholar 

  13. Donato, M.T., Jimenez, N., Castell, J.V. & Gomez-Lechon, M.J. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 32, 699–706 (2004).

    Article  CAS  Google Scholar 

  14. Wilkening, S., Stahl, F. & Bader, A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab. Dispos. 31, 1035–1042 (2003).

    Article  CAS  Google Scholar 

  15. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  Google Scholar 

  16. Khetani, S.R., Szulgit, G., Del Rio, J.A., Barlow, C. & Bhatia, S.N. Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling. Hepatology 40, 545–554 (2004).

    Article  CAS  Google Scholar 

  17. Madan, A. et al. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab. Dispos. 31, 421–431 (2003).

    Article  CAS  Google Scholar 

  18. Waring, J.F. et al. Isolated human hepatocytes in culture display markedly different gene expression patterns depending on attachment status. Toxicol. In Vitro 17, 693–701 (2003).

    Article  CAS  Google Scholar 

  19. Richert, L. et al. Gene expression in human hepatocytes in suspension after isolation is similar to the liver of origin, is not affected by hepatocyte cold storage and cryopreservation, but is strongly changed after hepatocyte plating. Drug Metab. Dispos. 34, 870–879 (2006).

    Article  CAS  Google Scholar 

  20. Rodriguez-Antona, C., Donato, M.T., Pareja, E., Gomez-Lechon, M.J. & Castell, J.V. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch. Biochem. Biophys. 393, 308–315 (2001).

    Article  CAS  Google Scholar 

  21. Isley, W.L. Hepatotoxicity of thiazolidinediones. Expert Opin. Drug Saf. 2, 581–586 (2003).

    Article  CAS  Google Scholar 

  22. Kamali, F. The effect of probenecid on paracetamol metabolism and pharmacokinetics. Eur. J. Clin. Pharmacol. 45, 551–553 (1993).

    Article  CAS  Google Scholar 

  23. Pirotte, J.H. Apparent potentiation of hepatotoxicity from small doses of acetaminophen by phenobarbital. Ann. Intern. Med. 101, 403 (1984).

    Article  CAS  Google Scholar 

  24. Corlu, A. et al. The coculture: a system for studying the regulation of liver differentiation/proliferation activity and its control. Cell Biol. Toxicol. 13, 235–242 (1997).

    Article  CAS  Google Scholar 

  25. Eschbach, E. et al. Microstructured scaffolds for liver tissue cultures of high cell density: morphological and biochemical characterization of tissue aggregates. J. Cell. Biochem. 95, 243–255 (2005).

    Article  CAS  Google Scholar 

  26. Allen, J.W., Hassanein, T. & Bhatia, S.N. Advances in bioartificial liver devices. Hepatology 34, 447–455 (2001).

    Article  CAS  Google Scholar 

  27. Naughton, B.A., Sibanda, B., Weintraub, J.P., San Roman, J. & Kamali, V. A stereotypic, transplantable liver tissue-culture system. Appl. Biochem. Biotechnol. 54, 65–91 (1995).

    Article  CAS  Google Scholar 

  28. Kaihara, S. et al. Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions. J. Pediatr. Surg. 35, 1287–1290 (2000).

    Article  CAS  Google Scholar 

  29. Kane, B.J., Zinner, M.J., Yarmush, M.L. & Toner, M. Liver-specific functional studies in a microfluidic array of primary Mammalian hepatocytes. Anal. Chem. 78, 4291–4298 (2006).

    Article  CAS  Google Scholar 

  30. Zeilinger, K. et al. Three-dimensional co-culture of primary human liver cells in bioreactors for in vitro drug studies: effects of the initial cell quality on the long-term maintenance of hepatocyte-specific functions. Altern. Lab. Anim. 30, 525–538 (2002).

    CAS  PubMed  Google Scholar 

Download references


We are grateful to Emanuele Ostuni and Surface Logix, Inc. for design and fabrication of the PDMS stencils, Howard Green for providing 3T3-J2 fibroblasts, Jennifer Koh for assistance with pilot studies, David Eddington for assistance with microfabrication, Taylor Sittler for helpful discussions regarding compound selection, Elise Liu for assistance with biochemical assays and Sandra March for assistance with RNA isolation. Funding was generously provided by a National Science Foundation (NSF) graduate fellowship (S.R.K.), NSF CAREER, National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases, Deshpande Center at MIT, the David and Lucile Packard Foundation, the Massachusetts Technology Transfer Center, and the Center for Environmental Health Sciences at MIT.

Author information

Authors and Affiliations



S.R.K. designed and performed the experiments, analyzed the data and wrote the manuscript. S.N.B. designed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Sangeeta N Bhatia.

Ethics declarations

Competing interests

S.R.K. and S.N.B. have stock in Hepregen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods (PDF 379 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khetani, S., Bhatia, S. Microscale culture of human liver cells for drug development. Nat Biotechnol 26, 120–126 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing