Control of coleopteran insect pests through RNA interference

Abstract

Commercial biotechnology solutions for controlling lepidopteran and coleopteran insect pests on crops depend on the expression of Bacillus thuringiensis insecticidal proteins1,2, most of which permeabilize the membranes of gut epithelial cells of susceptible insects3. However, insect control strategies involving a different mode of action would be valuable for managing the emergence of insect resistance. Toward this end, we demonstrate that ingestion of double-stranded (ds)RNAs supplied in an artificial diet triggers RNA interference in several coleopteran species, most notably the western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. This may result in larval stunting and mortality. Transgenic corn plants engineered to express WCR dsRNAs show a significant reduction in WCR feeding damage in a growth chamber assay, suggesting that the RNAi pathway can be exploited to control insect pests via in planta expression of a dsRNA.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Suppression of target mRNA in WCR.
Figure 2: F1 plants expressing a V-ATPase A dsRNA are protected from WCR feeding damage.
Figure 3: Northern blot analysis of large and small RNAs produced by F1 plants expressing the V-ATPase A dsRNA transcript.

References

  1. 1

    James, C. Global review of commercialized transgenic crops. Curr. Sci. 84, 303–309 (2003).

    Google Scholar 

  2. 2

    Vaughn, T. et al. A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci. 45, 931–938 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Rajamohan, F., Lee, M.K. & Dean, D.H. Bacillus thuringiensis insecticidal proteins: Molecular mode of action. in Progress in Nucleic Acid Research and Molecular Biology 60, 1–27 (1998).

    Google Scholar 

  4. 4

    Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Newmark, P.A., Reddien, P.W., Cebria, F. & Alvarado, A.S. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc. Natl. Acad. Sci. USA 100, 11861–11865 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Soares, C.A.G. et al. Capillary feeding of specific dsRNA induces silencing of the isac gene in nymphal Ixodes scapularis ticks. Insect Mol. Biol. 14, 443–452 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Bucher, G., Scholten, J. & Klingler, M. Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 12, R85–R86 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Tomoyasu, Y. & Denell, R.E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev. Genes Evol. 214, 575–578 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Rajagopal, R., Sivakumar, S., Agrawal, N., Malhotra, P. & Bhatnagar, R.K. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem. 277, 46849–46851 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Turner, C.T. et al. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 15, 383–391 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Anderson, S., Hicks, G., Heussing, J., Romano, C.P. & Vetch, C. Nucleic acid sequences from Diabrotica virgifera virgifera Le Conte and the uses thereof. US patent application publication number 2007–0050860.

  15. 15

    Winston, W.M., Molodowitch, C. & Hunter, C.P. Systemic RNAi in C-elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Honeybee Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).

  17. 17

    Kay, R., Chan, A., Daly, M. & McPherson, J. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236, 1299–1302 (1987).

    CAS  Article  Google Scholar 

  18. 18

    McElwain, E.F. & Spiker, S. A wheat cDNA clone which is homologous to the 17 kd heat-shock protein gene family of soybean. Nucleic Acids Res. 17, 1764 (1989).

    CAS  Article  Google Scholar 

  19. 19

    Armstrong, C. & Rout, J. Agrobacterium-mediated plant transformation method. US patent number 6,603,061 (2003).

  20. 20

    Oleson, J.D., Park, Y.L., Nowatzki, T.M. & Tollefson, J.J. Node-Injury Scale to Evaluate Root Injury by Corn Rootworms (Coleoptera: Chrysomelidae). J. Econ. Entomol. 98, 1–8 (2005).

    Article  Google Scholar 

  21. 21

    Drees, B.M., Levine, E., Steward, J.W., Sutter, G.R. & Tollefson, J.J. Corn rootworms. in Handbook of corn insects (eds. Steffey, K. et al.) 61–68, (Entomological Society of America, Lanham, Maryland, 1999).

  22. 22

    Pleau, M.J., Huesing, J.E., Head, G.P. & Feir, D.J. Development of an artificial diet for the western corn rootworm. Entomol. Exp. Appl. 105, 1–11 (2002).

    Article  Google Scholar 

  23. 23

    Marrone, P., Ferri, F.D., Mosley, R.T. & Meinke, L.J. Improvements in laboratory rearing of the southern corn rootworm, Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae). J. Econ. Entomol. 78, 290–293 (1985).

    Article  Google Scholar 

  24. 24

    Sambrook, J. & Russell, D.W. Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001).

    Google Scholar 

  25. 25

    Allen, E. et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat. Genet. 36, 1282–1290 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Tom Adams, Claire CaJacob and Steve Padgette for their support and helpful discussions; Wendy Maddelein and Steffy Denorme for molecular cloning support and dsRNA preparations; David Kovalic, Wei Wu, Marc Logghe and Irene Nooren for bioinformatics support; Robin Camp and Shubha Subbarao for assistance with plant feeding assays; Tim Coombe, Barbara Wiggins, Heidi Windler and Rich Yingling for corn transformation, propagation and analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James Roberts.

Ethics declarations

Competing interests

The following authors were employed by Monsanto while engaged in the research project described in this publication: J.A.B., W.C., G.R.H., T.M., M.P., J.R. and T.V.; and the following authors were employed by Devgen: T.B., P.F. and G.P.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Table 1 (PDF 1383 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baum, J., Bogaert, T., Clinton, W. et al. Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25, 1322–1326 (2007). https://doi.org/10.1038/nbt1359

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing